INTEREX

Xmxom 22—

=

o

W

—Z <

ul
\
X

LAS VEGAS

SEPTEMBER 20-25, 1987

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

INTEREX

the International Association of
Hewlett-Packard Computer Users

Proceedings

of the

1987 North American Conference
Of Hewlett-Packard Business
Computer Users

at
Las Vegas, Nevada
September 20-25, 1987

VOLUME 2

What If ... You Didn't Wait For Spectrum?
Squeezing the Last Bit Out Of Your HP 3000
By Michael Shumko, Robert Green, and David Greer
Robelle Consulting Ltd.

8648 Armstrong Rd. R.R. No. 6
Langley, B.C. Canada V3A 4P9

Telephone: (604) 888-3666
Telex: 04-352848

Copyright Robelle Consulting Ltd. 1987.

Permission is granted to reprint this document (but not for
profit), provided that copyright notice is given,

What If ... You Didn’t Wait For Spectrum?
-or-
Squeezing the Last Bit Out Of Your HP 3000

By Michael Shumko, Robert Green, and David Greer

The problem. Nightly batch jobs are still running the next morning. Users are
complaining that on-line response is terrible. In short, your HP 3000 is over-worked,
underpaid, and about to collapse from exhaustion.

The solution. Order a Spectrum: a Series 930 or 950.

The problem with this solution. Neither machine exists yet. (Okay. In the lab. But if
it’s not on the showroom floor, it can’t be bought.) What to do?

The solution to the solution. We have done an informal survey of large HP shops to
find out how the successful ones avoid topping out the HP 3000 line. What we found
was not some "secret” formula, but rather a mundane, continuous, attention to the details
of system performance. The successful sites still apply the long-touted answers for
boosting performance, such as balancing use of disc drives. Just look in your magazines,
newspapers and conference proceedings for all sorts of ways to improve performance.

Here are some of the ideas these users mentioned for how to ‘squeeze the last bit from
your HP 3000°.

pay attention to the details.

use one cpu per problem (distributed processing).
distribute an integrated solution over several CPUs.

put heavy cpu work on PCs (word processing, graphics).
upgrade to faster hardware (Series 70, LAN, forms cache).
review batch processing.

use NOBUF tools and optimum block sizes.

compile your fourth-generation applications.

get OMNIDEX for fast on-line database searching.

VeNaunhwD =

Not all of these solutions will apply to everyone. Many of these ideas are "old hat", but
they work. A few of these ideas are novel - you may not have heard of them before.
Some are not cheap (then again, neither is a Spectrum). If you’re strapped for
horsepower now, then these timely suggestions may give you the breathing room you
need. Until Spectrum, of course.

What if ... you didn't wait for Spectrum? 1 Robelle Consulting Ltd.

Attention to Detail Tip #1

Good system managers never stop thinking of new ideas to improve system performance.
Successful sites are constantly monitoring their machines. Here are some of the tools
they use.

Response Time.

Most shops we surveyed had OPT, but most were not using it regularly. Users complain
that OPT 1is difficuit to understand (even with all of the training). Joe Ballman at
Textron Marine Systems thinks that OPT consumes so much CPU time that it affects its
own measurements. David Lustig of BOSE uses a simple method to measure response
time. When a user complains that the computer is slow, he goes to the users terminal
and uses a stop watch to time the actual response time. Other sites were using SUE or
SURVEYOR from the contributed library.

HPTREND.

Most sites are using HPTREND to provide accurate information about machine usage.
In many cases, the HPTREND reports confirm the system manager’s intuition and
provides concrete evidence for upper management. Sites we contacted are planning their
machine resources at least a year into the future. Jim Bird at Turbo Resources is trying
SYSPLAN from Carolian Systems. This product is similar to HPTREND, but the trend
analysis is done on your own machine.

Database Performance.

Turbo Resources uses HowMessy to indentify the inefficient datasets in their application
(HowMessy is run once a week). Turbo uses DETPACK from Adager to repack one
critical dataset every day. HowMessy was used to obtain the "before" and "after"
pictures of the dataset packing.

Disc Cache Optimizer.

Markku Suni, an SE in Finland, has written an unsupported program which manages disc
caching parameters dynamically. It varies the sequential and random fetch quantums
depending on the current job mix, I/O queue lengths, etc. It will even disable caching
on a drive if it decides that throughput would increase without it. DCO does not work
well when the machine load is extremely dynamic (e.g., on a development machine).
You can obtain a copy from your SE.

These are a small sample of the ideas that help monitor and improve system performance.

No one knows all of the details that will keep your machine running; you must strive to
find them.

What if ... you didn’t wait for Spectrum? 2 Robelle Consulting Ltd. - Tip #1

Use One CPU Per Problem Tip #2

Problem.
How do you add CPU power to a 3000 when you already have a Series 70?
Solution.

Use one CPU per problem, or application, or department. Don’t try to crowd everything
onto one computer. Instead, use a separate CPU for each major application, or give
each department its own machine. That way, you make each application independent of
the problems in other applications. If the Payroll application is a hog, there’s no reason
for the Accounting users to suffer. Using separate machines also allows you to tune
each machine for its own application. ‘Distributed processing’ was the strategy most
frequently mentioned in our survey of successful sites. Most give programmers their
own machine.

Examples.

At Boeing, one of the large manufacturing systems has an ‘update’ machine and an
‘inquiry’ machine. The ‘update’ machine has 150 users who are updating the database.
No uncontrolled inquiries or reports are allowed on this CPU. The ‘inquiry’ CPU has a
copy of last night’s database from the ‘update’ CPU; on this machine they allow people
to make inquiries and to run QUIZ,

HealthPlus of Michigan provides heath care services using a Series 70 with 52 sessions
for all data entry and a Series 68 with 30 sessions for all on-line inquiries and reports.
They use Silhouette to keep the inquiry database current and a Series 48 is reserved for
all program development. Word processing is done on two stand-alone Series 37
machines.

Longs Drugs, a large west-coast chain of drug stores, has 200 HP 3000s. An extreme
example? Not really. True to the distributed processing ideal, each store has its own
Series 37. These handle the main pharmacy application, keeping track of prescription
stock, filling orders, and checking for dangerous drug interactions. When required, the
Series 37s use dial-up DS to exchange information with the head office Series 70s.
Otherwise, they're stand-alone machines. Every machine has a Console Engine to let the
head office know when problems occur. (In fact, the Console Engine was initially
developed for Longs Drugs.) At the head office, Longs puts separate applications on
separate machines. For instance, all the Personnel applications are on one Series 70, the
Accounting applications on another. Development is done on a separate machine again,

Consider another example, a company that sells supplies. They have 18 HP 3000s spread
all over the world. Before the MIS manager went to work there, his philosophy was
always ‘get a bigger machine’. Then he went there, and they have a philosophy of
‘getting the data down to the users’. So they have 3000s everywhere; every warehouse
has its own small HP 3000. They were having a problem with FA/3000: they gave it its
own Series 58. They don’t even have a Series 70, and aren’t budgeting for one until
fiscal '88.

What if ... you didn’t wait for Spectrum? 3 Robelle Consulting Ltd. - Tip #2

Tools.

If you go this route you'll want to make sure that you have the proper fools to manage
the network of machines properly. One type of tool is used to route spool files from
one machine to another conveniently.

Unispool from Holland House is one example of this. This allows you to have an
expensive peripheral like a laser printer connected to one machine, and have more than
one computer send output to it.

RSPOOL, from the contributed library, will duplicate spoolfles across a DS line.
RSPOOL creates a remote session, runs a remote program to generate the remote
spoolfle, and purges the original spoolfle. The price is cheap, but Joe Ballman of
Textron Marine warns that RSPOOL eats up the LAN and consumes over 3% of the cpu.

$Stdlist Management software (now called Job Rescue) from NSD can also help; it
checks spool files for error messages. This lets the computer look for problems itself,
allowing the users to get on with their own work instead of baby-sitting the computer.

If you setup a machine in a user department for unattended operation, youw’ll still have
console messages to contend with. The Console Engine from Telamon attaches to the
console and looks for specific conditions such as system failure messages, error
conditions, and that sort of thing. If it sees that the system has run into some trouble it
can either take action on its own (a ‘pseudo operator’) or it can dial the head office and
notify the system manager.

Resist getting a bigger machine.

You can always have that in reserve if you get in trouble. Get another machine instead.
Dexter Shoes manages one million open items, one million inventory items, six shoe
factories, over 50 retail outlets, and numerous wholesale clients with a network of six
Series 40s. The key advantage that system managers see to the "one cpu per problem”
philosophy, in addition to never ‘topping out’, is that you can push the machines into the
user environment. You don’t have to have a giant MIS. And when the machine is slow,
it’s because the users are running QUIZ reports. There are only a dozen users, so they
can observe and figure it out, whereas on a Series 70 with 180 users, even the system
manager doesn’t know what’s causing the problem. So you break it into smaller
problems. Each machine is less complicated, and we would guess, has fewer problems.
You will pay a little more for maintenance and raw horsepower, but you should be
easily repaid in better user service.

What if ... you didn't wait for Spectrum? 4 Robelle Consulting Ltd. - Tip #2

Distribute An Integrated Solution Over Several CPUs Tip #3

Okay, I accept the idea that I should have one application per CPU, but my application
is an integrated solution. All of the modules access common databases and I don’t have
time to rewrite it (or I bought the package and I don’t have the source code).

Problem.

You can't split a single integrated application over two machines.
Solution.

Yes you can, if you are clever.

AutoNet.

Karl Smith of Softsmith has developed an ingenious, simple method of distributing an
integrated application over several HP 3000s. Compaq Computers started in business a
few years ago. To manage their manufacturing work, they used ASK’'s MANMAN
system over dialup lines to a time-shared Series 42. Within weeks they had their own
machine, then two, and so on. Their growth has been so dramatic that they have never
had the time to customize ASK’s programs -- they use them "as is". Compaq now runs
its entire company on a network of 900 PCs and seven HP 3000s (no IBM mainframe).
When their processing needs for MANMAN exceeded the power of a single Series 70,
Tom Callaghan hired Karl to program a solution.

Tom wanted to be able to spread the databases and files of the integrated MANMAN
application over more than one HP 3000. Karl wrote an SL routine to intercept all calls
to the FOPEN intrinsic. His routine, called Global FOPEN, checks the user’s desired
filename against a table of remote file-set names. If it doesn’t find a match, Global
FOPEN calls the real FOPEN. If it does find a table entry for the filename, Global
FOPEN automatically gets the user a remote session with the same logon as his local
session (unless he already has one), and calls FOPEN for the remote file. With this
method, Compaq can easily distribute the ASK MANMAN package across several
machines, with no changes to the application. Karl advises that there be a logical split in
the application, where files may be moved. In the case of MANMAN, the three major
components are purchasing, manufacturing and physical inventory. Users logon to the
machine which contains the component they are interested in. This ensures that most of
the database access is local, with only occasional access to files on the other systems.
For more details, contact Karl at (713) 332-3846 and ask about "AutoNet".

The Inside Details.

The software is not terribly tricky after all. The normal FOPEN is renamed to be
HP’FOPEN, and the Softsmith FOPEN routine is added to the system SL. When FOPEN
is called, this routine determines which system the requested file resides on. If it’s on
another system, it just inserts the DS machine name into the device parameter, then calls
HP’FOPEN. Nothing to it. If necessary, it opens a DSLINE and does a remote hello
onto the other machine. In UB-Delta~1 the remote logon can be done automatically by
NS as part of the DSLINE command, making Karl’s routine even more vanilla. There
will still be a remote CI process. All that is saved is the trouble of having to do the

What if ... you didn’t wait for Spectrum? 5 Robelle Consulting Ltd. - Tip #3

remote hello and remote bye. Another advantage is that this new feature takes one less
NS socket.

Reflecting Mirror Images.

Miles Gilbert was designing a new Accounts Receivable system in Transact for Dexter
Shoes. Unfortunately, the people responsible for names and addresses were in Boston
and the people responsible for transactions were in Maine. How could Miles put the
data near the responsible users when both groups needed access to all of the data?

First, Miles split the database in two: names/address versus transaction. Then he put a
Series 40 in each location, with both databases on both machines., The users in Boston
maintain the name/address database and have read access to a copy of the transaction
database. In Maine the users maintain the transaction database and have read access to a
copy of Boston database. Each site has a mirror copy of the other’s database.

To keep the mirror databases in sync, Miles runs Silhouette in both directions betweeen
the sites. Silhouette transmits name/address changes from Boston to Maine, where it
applies them to a mirror copy of the database. This keeps Maine updated to within a
few minutes of real-time. Silhouette also transmits transaction changes from Maine back
to Boston, where they are updated to another mirror database. Each site has all the
current information, has control of its own data, and provides emergency backup for the
other site.

What if ... you didn’t wait for Spectrum? 6 Robelle Consulting Ltd. - Tip #3

Put Heavy CPU Work On PCs Tip #4

Applications such as spreadsheets, graphics and word processing are notorious consumers
of CPU time. These benefit from being on their own dedicated computers. PCs are a
good choice, as a dedicated PC often performs better than a busy Series 70 on
CPU-intensive applications.

Word processing is another application which definitely should be on a PC. If you’re
running HPWORD or some other word processing package on your HP 3000, you're
paying dearly for it. You should not allow any word processing on your HP 3000 unless
it's dedicated to word processing. HP has been advocating this approach for a few
years, and the development thrust of their software has been in this direction, with more
PC-based software, and access software to upload and download the data. You don’t
necessarily need the latest and greatest integrated software for uploading and
downloading. Reflection from Walker Richer & Quinn will do the job well.

Integrating PCs and 3000s.

Rolf Schleicher in Hamburg controls a network of over 200 PCs from his HP 3000, using
Reflection and a few other tools. The 3000 automatically logs onto the PCs at night and
backs up the hard disks for the users. He also updates the DBASE files on the PCs
nightly with the latest information extracted from corporate IMAGE databases. He
often uses his larger PCs as attached processors to expand the power of his 3000 (think
of how many MIPS there are lying around unused at night!). For example, if Rolf has a
large statistical analysis to do, he may download the data to a PC, start the analysis
running and upload a single number later as the result. He finds that many system
management tasks are easier to program in LOTUS than in COBOL. For example,
managing disc space and file usage by doing :LISTF and :REPORT into a LOTUS
spreadsheet for analysis.

A Company That Is Heavily Invested in PCs.

Compaq Computers has some 900 PCs in their company. Instead of downloading raw
data files from the HP 3000, they have summary files lying around which they download
using Reflection, feeding them into Lotus or graphics or whatever. They do all their
graphics on the PCs except for one giant run of 85 graphs in DSG, which comes at
month-end on the laser printer. It ties up an entire Series 70 until it’s over. They don’t
attempt to do anything else on that machine until the graphs are printed. But all of
their other graphics, what-if graphics, presentation graphics, is done on the PCs. This
keeps the graphics hogs off the HP 3000s.

What if ... you didn’t wait for Spectrum? 7 Robelle Consulting Ltd. - Tip #4

Upgrade to Faster Hardware Tip #5

The Series 70 is a winner.

People we talk to say that their Series 70s are terrific, especially when they're loaded up
with eight or nine megabytes of memory. They have a lot more horsepower than a
Series 68. If you're on a Series 68 or smaller, you might consider going to a 70 instead
of a 930 or 950. The Series 70 is so much more powerful than a 68 that we have heard
that it is impacting the market for the Series 930.

When Longs Drugs upgraded one of their Series 68s to a Series 70, they went to U-MIT,
Turbo IMAGE, and converted from Desk III to Desk IV all at the same time. At first
they didn't see any difference in performance. But then they discovered that Desk IV
ran 40% slower than Desk III! When they fell back to Desk III the system really took
off! The extra power of the Series 70 masked the poor performance of Desk IV. Now
that’s horsepower, to be able to swallow up application problems as easily as that. When
Boeing upgraded their TMS manufacturing machine from a 68 to a 70, they noticed a
tremendous improvement in performance. Their 2-day backlog of batch jobs
disappeared!

Use LAN/3000 instead of DS.

A LAN will not reduce your system load, but users report that it offers much higher
throughput than DS with just about the same overhead. You have to replace an INP
with a LANIC, and string coaxial cable instead of regular wires. Bill Gates at Longs
Drugs says that for the small price of 3% more cpu, a job which was taking 50 minutes
over a 56 kb line using DS now takes eight minutes over the LAN. When Northern
Telecom in Lachine went from DS to LAN, they got more communication throughput
without noticeable increase of cpu overhead. They have three Series 70s, a Series 52,
and two Series 9000s connected together in the same room. Besides being faster than DS
it costs less, because they require only one LANIC per machine instead of many INPs,
Using a ‘vampire tap’ they can add another machine to an active communications wire
without affecting any other machines.

7933XP drives with hardware cache seldom help and can actually hurt performance. A
few sites have reported improved performance using 7933XP drives in place of MPE
caching, but many more have not. Perhaps the Eagle XP drives will work better. They
have 2 megabytes of cache space, are 20% faster, and have reduced the "pep" overhead
to one millisecond per access (from 6 or 10 ms.). The new Falcon drives from EMC2
also show promise; they have 4 megabytes of cache, incorporate faster drives than the
Eagles, provide caching for requests of up to 32K bytes (instead of 4K bytes), and claim
to have a smarter cache algorithm.

More memory can help, unless you already have 3 megs for caching.

New CRTs with Forms Cache (2394) can improve response time.

What if ... you didn’t wait for Spectrum? 8 Robelle Consulting Ltd. - Tip #5

New 9600-Baud Modems can make remote users smile. The Micocom AX/9624c
modems understand HP's Eng/Ack protocol and have worked well on our Series 37 at
Robelle. Remember, response time is perceived by the user, and a large part of that
perception is not the processing efficiency of the programs, but the speed of the
datacomm gear.

What if ... you didn’t wait for Spectrum? 9 Robelle Consulting Ltd. - Tip #5

Review Batch Processing Tip #6

Successful Sites Discourage On-line Reports.

If you allow users unlimited access to run reports on the production machine, then why
should we feel sorry for you? You are getting the slow response that you asked for.
Reports should run in batch, because that is where you can control the total number at
any one time.

Concurrent Batch Jobs.

On a Series 70, there is enough extra power to allow concurrent batch jobs. Some sites
allow six or eight executing batch jobs at the same time. BOSE and Turbo Resources
both restrict concurrent batch jobs to different user.accounts. See MBQ in the
contributed library for ideas on how to control this.

The Night Time is the Right Time.

To ensure good response for on-line users, most of the successful sites we contacted had
a policy of controlling the number of concurrent batch tasks allowed during the day.
The 3000 will run just fine all night long, without anyone watching it. Many shops are
shifting work from prime shift to graveyard.

What To Do When Overnight Jobs Don’t Finish?

‘Unfinished nightly jobs’ is now a common complaint at HP shops, especially at month
end (perhaps because people listened to advice to shift work to the evening hours). In
our survey, we heard several methods for improving batch throughput: upgrade to a
Series 70, get a separate CPU for reports, require department-head approval on job
requests, reduce backup time, increase block sizes and, the most successful strategy,
apply MR NOBUF tools wherever possible (as an HP SE said, "I have seen incredible
speed improvement from front-ending QUIZ with SUPRTOOL. Software solutions to
performance problems often show gains of 10 or 20 times. Hardware solutions, with no
improvment in the efficiency of the underlying software, usually show gains of less than
1 or 2 times.")

Backup Taking Too Long.

Many people are spending 2 to 4 hours per night on backup. If you run out of night,
there are ways to reduce backup time. Get high-speed tape drives. Look at BackPack
from Tymlabs. HP’s Copycat program and the FCOPY-FAST option of MPEX will do a
high-speed disc-to-disc backup, after which you can let the users and jobs on again and
do disc-to-tape backup at your leisure. Elbert Silbaugh at Boeing uses this method and
keeps his system available 23.5 hours a day. Another Boeing site in our survey wrote a
privileged program to copy the database disc-to-disc while the users are still accessing it
in read-only mode. Their system is available 24 hours a day. (Adager can also copy a
database while it is open for read-only.)

What if ... you didn’t wait for Specirum? 10 Robelle Consulting Ltd. - Tip #6

Use MR NOBUF Tools and Optimum Block Sizes Tip #7

Problem. One of the most common destroyers of system performance is the notorious
serlal scan. When you copy an enormous file, or reorganize a KSAM file, or select 100
records to report with QUIZ by reading every entry in a million-record dataset, you are
bogging down the computer. The default methods of doing a serial scan are extremely
inefficient on the HP 3000.

Solution. One of the most impressive ways to speed up serial I/O is to use MR NOBUF
(multi-record non-buffered, not Mister Nobuff). You can write your own code to take
advantage of MR NOBUF access if you're careful, but you don’t need to - you can
purchase tools that do it for you. Popular tools which use MR NOBUF access are HP’s
DSCOPY (you can use DSCOPY for copying files to the same system), HP’s COPYCAT
for file copying and backup, MPEX’s FCOPY/FAST and Tymlabs’ COPYRITE for file
copying and duplication (powerful for KSAM users). Robelle’s SUPRTOOL does MR
NOBUF serial file access for IMAGE datasets (and any other file type) and
Running-Mate replaces serial dataset reads in applications.

The Power of MR NOBUF.

We got a call a while ago from a fellow who didn’t even know he had SUPRTOOL on
his system, because it came bundled with another package he had bought. He found it,
and the documentation, on his system so he started using it. He had a QUIZ job which
normally took two hours to run, cruising through a huge database. A total novice, using
the instructions in the manual he used SUPRTOOL to front-end his QUIZ report. The
total time for this daily job went from two hours down to 15 minutes.

One of the shops we interviewed still uses a service bureau for some big accounting
merges in IBM batch. They're considering that if the Spectrum is big enough, they
might use it for that. They used to have four service bureaus. Now they’re down to
one. They brought things in-house by giving them their own machines, finding
packages like mailing-list software front-ended by SUPRTOOL.

Turbo Resources uses their HP 3000 to bill their credit card customers. At month-end,
they had a batch program that generated 1,000,000 disc 1/Os reading a 90 record control
file. Sixty of the records were unnecessary and after reblocking the file, they were able
to read it in one disc I/0. They now keep the control information in a table in memory,
reducing one million disc I/Os to one.

Block Sizes.

The default blocking factors (number of records per physical disc block) is usually
wrong. For big batch disc files, the maximum block size is now about 14K words
(REC=14336), while the default is still the smallest block that will fit. The bigger the
block, the faster the programs will run. For IMAGE databases the default block size is
512 words, as it has been since 1974. Many people we contacted in our survey were
using 1024 words or more.

What if ... you didn’t wait for Spectrum? 11 Robelle Consulting Ltd. - Tip #7

Compile Your Fourth-Generation Applications Tip #8

Problem. Interpreted Transact, and other 4GLs, consume too much CPU time.
Solution. Compile Transact source using the Fastran compiler.

When Cathy Vanderburgh was at Macmillan Blodel, she wrote up her experiences with
Fastran as Riding Herd on a CPU Hog: "We recently developed a Transact system which
included a large (15,000 lines) and complex (10 screens) data-entry program. After
installation, the response times for the program varied from slow when the machine (an
HP3000/64 with MPE IV) was lightly loaded to abysmal when the machine was heavily
in use. Yet none of the other users on the system were experiencing similar problems at
any time. We ran OPT/3000 to observe the execution of the program. The CPU time
needed to interpret the IP code plus the complexity of the program was causing the MPE
scheduler to class the process as a ‘CPU hog’ and to penalize it by dropping its execution
priority. The only way to improve the response time would be to reduce the excessive
CPU usage. Fortunately, this story has a happy ending. We discovered a piece of
software called Fastran, a product of Performance Software Group, that compiles
Transact source code into an executable program. On evaluation, we found that a
Fastran version of the program used 1/4 to 1/3 of the CPU of the original Transact
program, enough of a drop to bring the response back to an acceptable level. The user
now enjoys(?) the same response patterns as everyone else on the machine. And the
moral of the story? Without Fastran, of course, the author of the original program
would now be busily re-writing it in COBOL. Plenty of programmers have discovered
the hard way the functional limits of tools like Transact.”

At CNR, where a large on-line application is written in Transact, compiling the
application with Fastran led to a CPU reduction of over 60%, and a stack size reduction
of 25%. Single-user elapsed run times did not improve much, but as more users were
added, the reduced CPU requirements produced shorter elapsed run times. These
numbers are for an I[/O bound application where most of the time is spent in the
database intrinsics and the file system; on CPU-intensive tasks the reduction can be
considerably greater.

At Kitsap County they use Fastran over Transact wherever possible because the
programs run faster. However, they have found a few cases that Fastran cannot handle.
If a program needs extensive table handling, they choose COBOL over Transact.

Dexter Shoes was described earlier as running large manufacturing and distribution
operation on a network of six Series 40s. Their entire application was coded from
scratch in Transact. They report that this gives them the ability to respond to user
suggestions in days instead of months. The reason they can get away with only Series
40s, instead of Series 68s or 70s, is that they compile the programs with Fastran.

Larry Kemp of HP Bellevue has found Fastran about 25% slower than COBOL and 50 to
98% faster than Transact (an 8 hour job reduced to 8 minutes was the best he ever saw!),
An alternative 4GL that he found to give excellent performance is Protos; it generates a
COBOL program for execution. And, finally, no one says you can’t rewrite your most
frequently used program in COBOL (use system logging to find out which program it is).

What if ... you didn’t wait for Spectrum? 12 Robelle Consulting Ltd. - Tip #8

Get OMNIDEX For Fast On-line Database Searching Tip #9

IMAGE provides calculated read, chained read, and serial read. OMNIDEX adds record
selection across multiple fields, generic retrieval and sorted sequential access, multiple
keys in masters, and keyword retrieval on text data. It does this by adding another
structure to IMAGE’s: the binary tree. Traversing this tree is fast, fast, fast.

HP uses OMNIDEX in the Response Center to index bug reports. That is how they can
find out instantly who else has had a system failure 916 on Series 37 under T-MIT with
a full moon. OMNIDEX indexes every word, not just the manually-assigned "keywords"
as in the old SSB system. Doug Iles of HP says, "We could enter partial values and/or
full values from several different fields and find 5 qualifying records out of 50,000 in
seconds."

The people at D.I.S.C. (the suppliers of OMNIDEX) distinguish between "informational"
data - data that you want on the system for doing inquiries, and “operational" data -
data generated by the transactions of the organization. For example, in an order
processing system, active orders are operational; customer and vendor master records are
informational. Operational data is volatile and lightly indexed. Informational data is
static and can afford to be highly indexed for fast, low-cost retrieval. In a general
ledger system, the transaction dataset is operational. You do data entry and editing with
it. When the transaction is completed, you post it to the ledger dataset, where it
becomes informational data. You no longer modify it (much), but you need to ask
numerous complex questions about it. OMNIDEX gives you the ability to index
evervthing in your information data. You can use batch time to update the indeces,
instead of on-line time.

Users also apply OMNIDEX to replace KSAM. The index-sequential part of OMNIDEX
(called IMSAM) will reindex about 1 million keys per hour on a Series 70 (versus 20 to
30 hours with KSAM).

Example:

Kim Everingham at Consolidated Capital reports that they use OMNIDEX extensively in
their tracking system for investors and investments. The power of OMNIDEX indexing
allows their offical IMAGE structure to be very simple: masters for entities and details
for transactions. They have 4.5 million sectors of data, 250 QUICK screens, 12-15
databases, and 35-40 users on a Series 70. Without OMNIDEX the application would
require an IBM mainframe. Within 1 or 2 seconds they can identify an investor and the
investments he is involved with, even if the investor only gives a vague or partial
description of himself (e.g., trust company, Ralph, Minneapolis). They do all updates
on-line, including updates of the OMNIDEX indeces; the only exception is the entry of
new investments -- that is done in a nightly batch job due to the serious impact on
response. They have plenty of horsepower with the Series 70; the only bottleneck is that
QUICK consumes about 60% of the CPU time, but this hasn’t impacted response time
yet. They also use SUPRTOOL for ad-hoc extracts and as a QUIZ front-end.

What if ... you didn’t wait for Spectrum? 13 Robelle Consulting Ltd. - Tip #9

Kitsap County Government is an HP site that gets a lot of work done without hitting the
limits of the HP 3000 line. Jim Kellam, the manager, started with a Series 48,
overloaded it, then added a Series 68 and left the 48 for development. He reports that
OMNIDEX inquiries are unbelievably fast (*find all the voters named Smith’ instantly
replies ‘1200 entries found’), but can be abused, just like any tool. For example, one of
their programs opens all eight databases at the start, in case you might need them.
Installing OMNIDEX implies an extra open and another extra data segment, the
equivalent of 16 DBOPENs per user. The users sometimes get in and out of the
application to access other software, so they pay this startup overhead more than once
per day. The IMSAM part of OMNIDEX allows you to define concatenated keys with
pieces from 3 different datasets. Jim feels that they may have overused these features,
because he observes slow response with some of these bizarre keys.

What if ... you didn’t wait for Spectrum? 14 Robelle Consulting Ltd. - Tip #9

Computer Insecticide
The Art of Debugging
By David J. Greer
Robelle Consulting Ltd.

8648 Armstrong Rd. R.R. No. 6
Langley, B.C. Canada V3A 4P9

Telephone: (604) 888-3666
Telex: 04-352848

Copyright Robelle Consulting Ltd. 1987.

Permission is granted to reprint this document (but not for
profit), provided that copyright notice is given.

Computer Insecticide
The Art of Debugging

By David J. Greer

If you asked me for the primary difference between a programmer right out of college
and one with five years’ experience, I would say "the ability to debug programs”.
Debugging is still an art, not a science; but there are some techniques that can help.
This paper provides guidelines and suggestions for finding and solving bugs. Every
reader should find at least one new debugging idea.

Personal Background

I am responsible for all of the programming and documentation of two of Robelle’s four
products: SUPRTOOL and XPRESS. Both are large programs written in SPL.
SUPRTOOL is a batch optimizing tool and most of the code is technical in nature.
XPRESS is an electronic mail package that uses an IMAGE database for its data
structures. The XPRESS code is more application oriented. I also work on Prose, our
text formatter, which is written in Pascal, and have done a great deal of application
programming in COBOL. I haven't done much work with Fourth Generation Languages.

Computers Have Always Had Bugs

As long as there have been computers, there have been bugs. You have probably heard
the story, attributed to Grace Hopper, of the first "bug”. According to the story, the
programmers on one of the first digital computers were having great difficulty getting a
program to work. One time it would fail -- the next time it would succeed. After
numerous fruitless revisions to the program, someone happened to look inside the
cabinet. An insect had gotten into the vacuum tubes and relays and been zapped. It
was acting as an intermittent connector, changing the wiring of the computer from time
to time. They removed the bug and the program worked. If only all bugs were so easy
to find and remove.

Organization of this Paper
We will present our ideas on debugging in five steps:
1. An Example: debugging is easier to show than it is to discuss.

2. Search Techniques: where in all those thousands of lines of code is the bug.

Computer Insecticide 1 Introduction

3. Testing Techniques: there are several areas where you should concentrate your
efforts.

4. Development Environment: tools and techniques that help programmers write, test,
and debug faster.

5. A Final Example: another example of how debugging principles were used on a
real-life bug.

Introduction 2 Computer Insecticide

An Example

If something can go wrong,
it will.

Murphy’s Law

A user reported the following problem in our SUPRTOOL product. When you exitted
from SUPRTOOL, the following error message was displayed:

Warning: Using DBGET for the input records
IMAGE ERROR AT %001142: CONDITION WORD = -11
DBCLOSE, MODE 3, ON #2 OF <NULL>

BAD DATA BASE REFERENCE (FIRST 2 CHARACTERS)

ERROR: Unable to rewind dataset with DBCLOSE

Search Techniques

To solve this problem, we need to know the sequence of events that led to this message.
Before this error message appeared, these commands were entered into SUPRTOOL:

>BASE TEST, 3 {Open the database in mode-3}

>GET DLINE {Request input from the dataset DLINE}
>BASE {Close the database}

>EXIT {Exit from SUPRTOOL}

Isolating The Problem

There are approximately 35,000 lines of code in SUPRTOOL. There is only one place
where DBCLOSE-Mode 3 is called. We discovered this by searching for the string
"DBCLOSE" in all of the SUPRTOOL source files. SUPRTOOL is written in small and
modular pieces and there are only three places where DBCLOSE is called. Only one of
these uses mode-3. Given the sequence of SUPRTOOL commands, the procedure where
the DBCLOSE-Mode 3 call is located should never be called.

This piece of code should never have been executed, but the evidence says that it was,
Reading the code reveals the following if statement:

if in’filenum <> 0 then
call code where DBCLOSE-Mode 3 fails

At this point, the sequence of SUPRTOOL commands guarantees that in’filenum must be
zero. The SUPRTOOL command:

>BASE

Computer Insecticide 3 An Example

is supposed to guarantee that the database is closed and in’filenum is set to zero. Close
examination of the code showed that for the special case where the database was open in
mode-3, the in’filenum was not being reset to zero. We have found the bug.

Software Engineering

While isolating the code, we had two "guarantees®. They were:

1. The call to DBCLOSE-Mode 3 should never have been executed for the command
sequence entered.

2. Given the command sequence, the in’filenum variable had to be zero.

These "guarantees” are called assertions. An assertion is something that must be true in a
given circumstance. SUPRTQOOL is writtences. This makes it

easier to find and verify the assertions.

Conclusion

This example shows the three main points that we want to make about debugging:

We used search techniques to isolate the problem. When we were first presented with
this problem, we did not have all of the command sequence.

We used testing techniques to check our assertions (e.g., we first opened the database
in mode-1 which worked fine).

Using the tools in our development environment, it was possible to isolate this problem
to one line of code out of 30,000.

An Example 4 Computer Insecticide

Search Techniques

When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth.

Sherlock Holmes in The Sign of Four

Before fixing software problems, we need to find them. In this section, we will suggest
techniques for reviewing both code and data to find the one piece of code or data where
the problem occurred.

Reproducing The Problem

Start by getting the exact input if you can. Try reproducing the problem in your test
environment with as little data as possible. Ask about all of the conditions present when
the problem occurred (e.g., other users, file equations, batch jobs, etc.).

Sequential Search

The simpliest way to find the problem is to start at the beginning and read to the end.
You start with the first line of code in your program and you follow the logic one line
at a time. Study your database by listing it sequentially. With small programs and small
amounts of data this is effective.

The Game of Clue and Code

Parker Brothers produces a popular game called Clue. The objective of Clue is to
deduce the solution to a crime by a process of elimination. A game might end with,
"Colonel Mustard did it in the bedroom with the wrench". With programs, you can do
the same thing by doing numerous, carefully selected test runs, each of which changes
only one factor. From the differences in the results, you can often deduce exactly
which module the error is in and even which data structure is involved. The
SUPRTOOL example used the "clue” method.

Let your program execution give you clues to the problem areas. As early as possible
eliminate as much code as possible. Try to find the assertions, these usually provide the
best clues. Check boundary conditions. Many problems arise around boundary
conditions. Look for "boundary" clues. For example, in our DBAUDIT program had a
bug in it recently that was a classic case of a boundary condition. A detail dataset with
9 or more critical fields would cause DBAUDIT to produce unpredicatable results.

Computer Insecticide 5 Search Techniques

The Game of Clue and Data

A typical problem with production application systems is that something goes wrong
with the data, but you only find out long after the problem occurred. Playing Clue in
these cases involves eliminating as much data as possible.

Even if you know that one of 300 records is wrong, it is usually impossible to examine
all 300 records. Nor is it possible to trace your program execution through all 300
records. Use all of your information to reduce the amount of data.

Use IMAGE paths to isolate a subset of your dataset. If you have a transaction file with
a million records, try to reduce the data to a specific period. For example, start with
the data for one month, then one week, and finally one day. It is easier to debug if you
can reproduce the problem with one record from your database.

Data Assertions

Assertions about your data are just as important as assertions about your code. Clues
often appear with inconsistent data. Is there a transaction with an amount less than zero
(when you know that all transactions must have an amount greater than zero)? Do you
have date fields? Write a program that checks whether all date fields contain a valid
date. If a record has an invalid date, it may contain other invalid information.

Tracing Execution

When looking for clues, it is often difficult to answer the question "did statement-x get
executed". Typically, we resort to inserting tracing code in our programs, or use
TOOLSET to do it for us. Many programmers add a display statement for every
SECTION in their COBOL program. This is usually the slowest way to trace code
because there is too much output.

Assertions are the best way to trace your code. Add DISPLAY statements to check your
assertions. Often, a half-dozen display statements will give you enough clues to find the
bug.

Use assertions to choose which variables to display. In the SUPRTOOL example it was
not necessary to add tracing code because we knew that the problem was caused by
in’filenum not being zero. If we had further difficulty in isolating the code, we would
have added tracing code to print the value of in’filenum in selected procedures. Note
that we would not have printed all 200 SUPRTOOL global variables.

Problem Classification

The causes of programming bugs vary in their size and complexity. We would classify
problems into three general categories:

Search Techniques 6 Computer Insecticide

1. One-line problems. This is where a few lines of code are incorrect. One of the most
common one-line problems is a boundary condition (less than instead of less than or
equal). Many of these problems can be discovered early if you watch for off-by-one
errors and if you test programs at their boundary values.

2. Invalid data structure: you have chosen the wrong data structure. Problems with the
current record in IMAGE are one example of this class. Fixing these problems is
usually more difficult than fixing one-line problems. Common data structure errors
include using too small a variable to hold a total value. If you are totalling a PIC
S9(4) COMP variable, you should use PIC $9(9) COMP for the total variable.

3. Incorrect algorithms: the algorithm does not solve the problem (you only thought that
it did). For example, erasing a master dataset.

With IMAGE, a change in a data structure often requires changes in the algorithm that
accesses the data structure. For example, you currently use a master dataset, but you
need to change it to a detail dataset and add an automatic master to provide access by
two key values. This requires a change to the data structure (changing the master
dataset to a detail) and a change to every program that accesses the master dataset
{changing a DBGET-Mode 7 to a DBFIND and DBGET-Mode 5).

Examine All of the Evidence

This includes the input data, output data, the source code, any library routines, and
anything else that might help (even the documentation). Are there any file equations in
effect (use :LISTEQ)? Are there any temporary files (use :LISTFTEMP)? Check your
premises before you invest too many hours.

Check that you are using the right SL file (use LMAP for this) and that the subroutines
in the SL file are correct. See if you are linked to an old SPL subroutine that you didn’t
know about. Check the obvious: is your program using the correct database?

Keep An Open Mind

If you think you’ve identified the section of the program that contains the bug, but
there appears to be nothing wrong with it, look somewhere else. Showing the code to
another person can highlight the problems with those pieces of code "that couldn’t have
a bug". If you have a really bad bug, leave it overnight. Often, the answer will be
sitting there in the morning.

If you cannot reproduce the bug, examine the source code for problems. Often you will

discover incorrect code, but sometimes this is not the code that caused the original bug.
Don’t stop, you will usually find the problem.

Computer Insecticide 7 Search Techniques

Summary

Searching is a process of elimination.

Check data assertions.

Trace execution with DISPLAY statements or TOOLSET.
Three types of bugs: one-line, bad data, and bad algorithm.
Examine all the evidence.

Keep an open mind.

Search Techniques 8 Computer Insecticide

Testing Techniques

Keep it as simple as possible,
but no simpler.

Albert Einstein

We assume that you would like to find the bugs before they happen. Our current
knowledge of software engineering does not guarantee that bugs will be absent from
computer programs. Our only solution is to test our software for the absence of bugs.

Keep It Simple Stupid - KISS

Writing complicated software is an open invitation for Murphy to descend. Writing and
debugging code is already difficult; don’t make it worse by inventing tricky data
structures or fancy algorithms. Use the simplest idea that will work. Optimize later,
only when you know that the optimization is necessary.

Boundary Conditions

Errors are most frequent on boundary conditions. For example, beginning of file, end
of file, empty file, full file, beginning of loop, end of loop, entry to module, exit from
module, value less than limit (instead of less than or equal), table overflow, or table
empty. When verifying code, check that the boundary conditions are what you expect.

Test Assertions

Check each assertion. You should take some time to create errors in your program to
test error conditions. How do you know that your fatal IMAGE processing is correct if
you have never tested it?

Write and Test Small Pieces

We typically write code in 50-100 line increments. This means that every 50-100 lines
of code are compiled, run, and tested. We verify that each small piece of code is
working before proceeding to the next piece of code. Later, we only have to test the
interfaces between each small procedure.

Test each module (a module is 1000-2000 lines of code) as it is completed. To complete
testing, check that the various modules interact with each other. In the typical
COBOL/IMAGE environment, procedures become SECTIONs (they should be less than
100 lines of code) and modules become programs or subprograms.

Computer Insecticide 9 Testing Techniques

System Testing

This testing involves a methodical approach to the data and careful testing of different
modules. You should choose a small, but representative group of data. This data should
cover all of the common cases. Include test data for exceptional conditions that you
expect in your application.

The less manual testing, the better. Automate your test environment using job streams.
At Robelle, we test SUPRTOOL with over 300 tests organized into 35 job streams.

Have good control over your test environment. Store a copy of your test data. Assume
that programs you will be testing will destroy your test data.

The SUPRTOOL Test Environment

The SUPRTOOL test jobs are organized into 35 job streams. We carefully selected a
few data files for use in these job streams. We also wrote a set of programs to help in
verifying the execution of SUPRTOOL. Here is an example of an actual SUPRTOOL
test;

{job jtest02,bob.green,suprtest;outclass=lp,3,1;inpri=7
! comment

{comment setup: 12 May87 by David Greer

!comment

!comment The next test checks that when suprtool is :RUN
!comment with PARM=16, the file INPUT is copied to the
!comment file OUTPUT.

{ comment

‘purge fileix

!file input=filel

{file output=filelx

{run sttest.pubnew.robelle;parm=16

!run compare

filel

filelx

!purge filelx

!comment

{comment End of JTESTO2.

! comment

!run result;parm=2;info="PARM="

iset stdlist=delete

leo]j

SUPRTOOL Test Description

To reduce the information from these job streams we use the following techniques:

Testing Techniques 10 Computer Insecticide

1. The $STDLIST listing uses a low outclass priority (3). We almost never print the test
job SSTDLIST listings.

2. If anything goes wrong in the job stream, it is aborted by setting the fatal JCW.

3. The COMPARE program compares two files and sets the fatal JCW if they are not
identical.

4. The RESULT program sends a :TELL message describing which job has completed.
It also appends a record to the file RESULTD.SUPRTEST. A listing of this file show
which jobs completed.

5. If the job stream completes successfully, the $STDLIST listing is deleted.

If a test fails, the job stream listing is not deleted. This lets us examine the listing to
see where the error occurred. After the tests have completed we have to only list the
result file to see our test results.

Once a test-bed environment has been set up, it becomes easier to add new tests. Every
time we find a bug in SUPRTOOL, we attempt to devise a test that will discover the
bug if it every shows up again. It is common for a bug to reappear in later versions of
a program.

Scaffolding

In the Mythical Man-Month,Hscaffolding as "the programs and

data that are used for debugging, but which never appear in the final application”.
Brooks also suggests that "it is not unreasonable for there to be half as much code in
scaffolding as there is in the product”. The COMPARE and RESULT programs from
the SUPRTOOL test job are examples of scaffolding. A test database is another
example. If you intend to build reliable software, be prepared to invest resources in
building the scaffolding.

Pascal Validation Suite

The Pascal Validation Suite is a set of programs to test a Pascal environment (compiler,
linker, loader, and run-time environment). This suite of programs has been used to test
many Pascal compilers, including HP’s and our own, for compliance with the
international standard for the language. The suite designers distinguished between two
classes of tests: conformance and deviation,

Conformance
A conformance test attempts to verify that a program will execute in a given set of
circumstances. For example, you may accept a transaction amount from $0.00 to $9,999.

A conformance test would insure that the program accepted any amount in the specified
range. The SUPRTOOL test above is a conformance test.

Computer Insecticide 11 Testing Techniques

Deviation

A deviation test attempts to make a program fail in a given set of circumstances. Note
that a deviation test discovers a bug if the program executes without an error. For the
transaction amounts above, deviation tests would verify that the program produced an
error for amounts less than zero, greater than $9,999, or if three decimal points were
entered.

The Pascal Validation Suite contains many deviation tests. The following one should be
understandable, even to non-Pascal programmers:

{TEST 6.1.5-4, CLASS=DEVIANCE)}

{The number productions specified in the Pascal standard
clearly state that a decimal point must be followed by a
digit sequence. The [Pascal] processor deviates if the
program is acceptable, in which case it will print
’deviates’. The processor conforms if the program is
rejected.

)
program téplp5d4 (output);
var
i : real;
begin

i := 0123.;

writeln(’ The value of I is /, 1i);

writeln(’ Deviates...6.1.5-4, number syntax’)
end.

The compiler should produce an error when it compiles this test program. If it compiles
and runs the program, then the deviation test has failed.

Note that like the SUPRTOOL test, the Pascal test is self-identifying. The test suite is
organized around the ISO standard document for Pascal (e.g., 6.1.5-4 is the fourth test of
section 6.1.5 of the Pascal standard).

In general, it is easier to perform conformance tests. When automating deviation tests,
care must be taken to verify that the program stopped execution because of the
deviation error and not for some other reason.

Summmary

Keep your software simple.

Explicitly test for boundary conditions.

Write code to check assertions.

Write and test code in small pieces.

Use automatic testing wherever possible.

Invest in scaffolding to assist debugging and testing.

Testing Techniques 12 Computer Insecticide

Development Environment

It’s the little things that count.

Greer’s Law

Excellent carpenters use the best tools. Good programmers should also be given the best
tools. Program development follows this algorithm:

while not problem-solved do

while bugs-still-exist do
begin

write code

compile code

test code

verify results
end

Do your tools help each statement of this process?

Writing Code - The Programmer Environment

An editor is the programmer’s most important tool. If you accept the algorithm
presented above, you will expect your text editor to provide facilities for writing code,
compiling, prepping, and running programs. Every time you must exit from your
editor, you lose at least ten seconds (ignorning the time for /Text and /Keep). Worse,
it’s a thorn in the side of each of your programmers.

QEDIT provides all of the facilities for creating, compiling, prepping, and testing code.
It is optimized to make the most common operation, writing code, as fast as possible. If
you can’t afford QEDIT, try QUAD from the contributed library.

Verifying Program Execution

QUERY has added immensely to the power of IMAGE. With QUERY it is possible to
verify execution of a program which modifies an IMAGE database. If you use MPE
files or KSAM files in your application, you must write a program for every file which
prints out the contents in a readable way. Using the FCOPY or SUPRTOOL
OCTAL,CHAR listing on MPE or KSAM files is asking for trouble.

QUERY has two potential problems. QUERY is very slow at sequentially reading a
large dataset. You cannot hold QUERY as a son process from your editing environment.
Using process suspension, you should be able to switch between your editing
environment and your verifying environment in under a second.

SUPRTOOL solves both of these problems. First, it is very fast at sequentially reading
an entire dataset. SUPRTOOL includes a database editing package especially designed

Computer Insecticide 13 Development Environment

for programmers verifying program execution. Finally, SUPRTOOL can be held as a
son process with the database open. Switching context between editing and verifying is
almost instantaneous.

If you have MPEX from VESOFT, you can also have fast context switching. You can
hold QUAD as a son process and do your compiling, prepping, and running from within
MPEX. You can also use MPEX to quickly examine MPE and KSAM files.

DBAUDIT and Program Verification

Transaction logging is an optional feature of IMAGE that transcribes all database
changes to a logfile on disc or tape. DBAUDIT will play back IMAGE logfiles, showing
you what values were added, deleted, and modified.

Logging and DBAUDIT give you another perspective on your applications. You can
verify program execution by using logging what programs are actually doing to the
database. If the programmer who created the program has left, this may be the fastest
way to find out what the program is trying to do. If you don’t have any money in your
budget for DBAUDIT, start by trying LOGLIST from the contributed library.

Suppose you have acquired an Accounts Payable package from an outside software
vendor and some functions of it are not working properly. How do you report your
problems to the vendor with enough information to ensure that he will be able to correct
the bugs?

One way is to turn IMAGE logging on and then print out the database transactions that
you suspect may not be working properly. This record of what the programs actually
did to the database may contain just the hard facts that the vendor will need to fix the
errors.

MPE Accounting Structure

Take time to implement your MPE accounting structure. A poor choice hinders
development and is difficult to change after the fact. Avoid moving users or
programmers around from account to account or group to group. All of those :HELLO
commands will start slowing your machine down. Here is one suggestion for an MPE
accounting structure.

Have three different accounts. One for development (e.g., DEV), one for testing (e.g.,
TEST), and one for production (e.g., PROD). The group structure within each account
should be identical. Some group suggestions might be:

COMPILE

This group contains should contain one file per program. Each file should be an MPE
:STREAM file which will recompile the program the program with the name of the file
in the group. You may wish to only create job streams for programs that consist of
more than one source file, otherwise use MPEX from VESOFT.

Development Environment 14 Computer Insecticide

DATA

Put all IMAGE databases, all KSAM files, and all MPE files in this group. You should
include the schemas that created the database, but be sure to remove the passwords first.
PUB

This group should contain only program files and one SL file.

SOURCE

The source code for each program. The file-naming scheme you use should be flexible
enough so that programs which consist of multiple source files will have similar
filenames.

Program Identification and Version Control

Every program should have a name and a version number. Reporting programs should
show the program name and the version number as part of the heading line. Find room
on your V/PLUS forms for the program name and the version number.

Whenever you make any changes to a program, increment the version number. Keep the
version number up-to-date on all related documentation. Use the version number to
control installation of new versions of software into production.

Moving Programs

Programs should be modified in the DEV account. When a program is released for
programming, the following steps should be taken:

1. Move the source code to the TEST account.

2. Move the COMPILE job stream to the TEST account.

3. Purge the program file from the PUB group of the DEV account.

4, Use the COMPILE job stream to recompile the program in the TEST account.

5. Test program execution against the test data.

6. If there are no problems, move all files from the TEST account to the PROD account.
If any bugs are found, do not allow changes to be made in the TEST account. Copy the

source code back to the DEV account, where it is repaired and tested by the
programmer. Then repeat the steps to move the program back to the TEST account.

Computer Insecticide 15 Development Environment

Naming Conventions

Just as naming conventions are important for programs and databases, they are also
important for the files in your applications. The MPE file system makes it difficult to
choose meaningful filenames. One solution is to pick arbitrary filenames and keep an
index of what every name means (e.g., MISO01). Another solution is to use added group
names (e.g., BUDGETO1.REPORTS.ACCTING).

Files that logically belong to the same program should have the same filename in each of
the different groups: BUDGETO0!.DOC, BUDGET(01.SOURCE, BUDGETO!.PUB,
BUDGETO01.COMPILE.

Summary

Get a powerful text editor.

Verify program execution with QUERY or SUPRTOOL.
Use transaction logging to monitor execution.

Build a rich MPE accounts structure.

Enforce version controls and naming standards.

Development Environment 16 Computer Insecticide

A Final Example

Inside every large program is a small
program struggling to get out.

Hoare’s Law of Large Programs

Every command-driven Robelle product (QEDIT, SUPRTOOL, and DBAUDIT) has a
calculator command. This command is implemented by calling a standard calculator
subroutine. This is a good example of modular program development. All three
products have a calculator, but there are only ten to fifteen lines of code in each
product to implement the calculator. One problem with this approach is that a bug in
the calculator routine shows up as a bug in all three products. The following is a
description of one bug that showed up in three different ways.

The Original Problem

The calculator takes an expression, evaluates it, and prints the result. Typical
expressions would be:

=20+15 {add two numbers together)
Result= 35.0

=20*%15 {multiply the same numbers}
Result= 300.0

=1e50*1e50 {computation overflow}

ERROR: Overflow of your calculation, result is invalid
Result= .0

Care was taken to insure that any calculation overflow, underflow, or division by zero
was correctly reported. We wanted to be sure that the calculator routine would not abort
if one of these exceptional conditions occurred. A trap routine was written in SPL to
catch and report these errors.

procedure calc’aritrap(long’result,trap’type);
value trap’type:;
integer trap’type:;
long long’result;
option internal;
begin

if trap’type.(10:1) = 1 then <<floating overflow>>
begin
p "Overflow of your calculation, result is invalid"err;
long’result := 0.0LO;
end’if
else
if trap’type.(9:1) = 1 then <<floating underflow>>

Computer Insecticide 17 A Final Example

begin
p"Underflow of your calculation, result is invalid"err:
long’result := 0.0L0;

end’if

else

if trap’type.(8:1) = 1 then <<floating divide by zero>>

begin
p "Division by zero attempted, result is invalid"err;
long’result := 0.0LO;

end’if;

end’proc; <<calc’aritrap>>

The calculator will display the result in three different formats. The default is to print
the result as a real number. The other three formats are Octal, Double, and Bit. To
produce each of these results, the long-real result is converted to a double integer (PIC
S$9(9) COMP). For example:

=10,b {the 16-bits in the number 10}
Result= %(2)00000000 00001010

A Wrong Assertion

If you examine the code for the calc’aritrap routine you will find a simple assertion.
The arithmetic errors that can occur are floating overflow, underflow, and divide by
zero. What happens if you convert a huge long-real number to a double-integer? In all
of our products you were aborted with an integer overflow error:

=1le50,b {convert a large number to double}

ABORT :SUPRTOOL.PUB.ROBELLE. %0.%1230
PROGRAM ERROR #1 :INTEGER OVERFLOW

Our first attempt to fix this problem was to isolate all of the code that converted
long-real values to double-integer into one subroutine. We would check for overflow in
this subroutine.

double subroutine longtodouble(long’value);
value long’value;
long long’value;
begin
longtodouble := fixr(real(long’value)):;
if overflow then
begin
p"Overflow of your calculation, result is invalid"err;
longtodouble := 04:
end’if;
end’subr; <<longtodouble>>

A Final Example 18 Computer Insecticide

Our Second Assertion

There is a very subtle assertion in this subroutine. It assumes that the ‘if overflow then’
statement will be executed. Because traps are enabled, this assertion is false. Before the
if statement is executed the calculator has aborted with an integer overflow,

Even worse, we never tested this piece of code. It was so obvious that we knew it must
work. Of course, we were wrong and the calculator would still abort with integer
overflow.

One More Solutlon

Another problem with this solution is that it assumes that the next person to enhance the
code would remember to do all long-real to double-integer conversions by calling the
subroutine. The chances are that future enhancements would not use the subroutine and
new integer overflow bugs would be introduced.

We already have a mechanism for detecting integer overflow errors. We have our
original calc’aritrap routine. It seemed to make more sense to modify it to process
integer overflow routines. Our existing calc’aritrap routine only handled long-reai
problems. Now it must handle both long-real and double-integer problems. Many
COBOL programmers may find this code difficult to understand, but it shows our
attempt at catching overflow errors.

procedure calc’aritrap(trap’type):;
value trap’/type;
integer trap’type;
option internal;

begin
long pointer long’result = gq-5;
double dbl’result = g-6;
if trap’type.(11:1) = 1 then <<integer overflow>>
begin

p "Overflow of your calculation, result is invalid"err;
dbl’result := 04;

end’if

else

if trap’type.(10:1) = 1 then <<floating overflow>>

begin
p "Overflow of your calculation, result is invalid"err;
long’result := 0.0LO;

end’if

else

if trap’type.(9:1) = 1 then <<floating underflow>>

begin
p"Underflow of your calculation, result is invalid"err;
long’result := 0.0L0;

end’if

else

if trap’type.(8:1) = 1 then <<floating divide by zero>>

egin

Computer Insecticide 19 A Finai Example

p "Division by zero attempted, result is invalid"err;
long’result := 0.0LO;
end’if;

end’proc; <<calc’aritrap>>
This time we did test the calculator for integer overflow, Everything worked great so
we installed this version of the calculator in all of our products. After about a year, we
received a telex with the following example:

=1e50*1e50 {computation overflow)

ERROR: Overflow of your calculation, result is invalid

ABORT :SUPRTOOL.PUB.ROBELLE.$0.%3347
PROGRAM ERROR #24 :BOUNDS VIOLATION

Unbelievable, but after changing the calc’aritrap routine we forgot to test for long-real
overflow. Our single biggest problem was that we did not have any well-established
tests for the calculator. We have now solved the problem with the following job stream:

!job jtestol,bob.green,suprtest;outclass=1p,3,1;inpri=7
{comment

!comment setup: 12 May87 by David Greer

!comment purpose: This job stream tests basic command

! comment invocation within suprtool (including
! comment the calculator).

{comment

!comment

lcomment test calculator

!comment

{purge filelx
Irun sttest.pubnew.robelle
=10+32 ‘
=10-32
=10%32
=10/32
=10%%*32
=10+32,b
=10+32,d
=10+32,0
=%10
=%10,0
=%10,b
=%10,d
=%$10 %10
=%10 %10,0
=%10 %10,b
=%10 %10,d
=1 -1,0
=-1 -1,b
=1 -1,d4

A Final Example 20 Computer Insecticide

=1e50*%1e50
=le-50*%1e-50

=10/0.0

=le50,d

in filel

out filelx

exit

!run compare.suprtest
filel

filelx

lpurge filelx

!run result;parm=1;info="Calculator"
!set stdlist=delete
teoj

Note that we do not check the results of the calculator. We have never had a bug with
the actual results of the calculator, but we have had no end of problems with overflows.
Note that the trap routine is a boundary condition. It is never invoked unless the
calculator is stretched to its limits.

What about our final calc’aritrap routine? Most of you will never need an arithmetic
trap routine, but this one works for double-integer overflow and long-real overflow,
underflow, and divide by zero. Of course, it still has a bug or two: it won’t handle
single-integer overflow.

procedure calc’aritrap(trap’type):
value trap’type:
integer trap’type:;
option internal;

begin
long pointer long’result = g-5;
double dbl’result = g-6;
if trap’type.(11:1) = 1 then <<integer overflow>>
begin

p "Overflow of your calculation, result is invalid"err:;
dbl’result := 04;
return 1;
end’if
else
if trap’type.(10:1) = 1 then <<floating overflow>>
begin
p "Overflow of your calculation, result is invalid"err;
long’result := 0.0LO;
return 2;
end’if
else
if trap’type.(9:1) = 1 then <<floating underflow>>
begin
p"Underflow of your calculation, result is invalid"err;
long’/result := 0.0LO;
return 2;

Computer Insecticide 21 A Final Example

end’if
else
if trap’type.(8:1) = 1 then <<floating divide by zero>>
begin
p "Division by zero attempted, result is invalid" err;
long’result := 0.0LO;
return 2;
end’if;

end’proc; <<calc’aritrap>>

Conclusion

Our current knowledge of software development does not allow us to completely
eliminate bugs from our code. This paper tries to show areas where we, as software
developers, commonly leave gaps for bugs to creep through. Good luck with your
software and may you never have to search for bugs.

Debugging Checklist

Search Techniques
Sequential and binary search are weak methods.
Clue: a process of logical eliminiation.
Checking assertions and tracing execution.
Examine all of the evidence and keep an open mind.

Testing Techniques
Test boundary conditions and assertions.
Write and test small chunks of code.
Automate the testing of your final system.

Development Environment
Use an editor that compiles, preps, and runs.
Verify execution with QUERY/SUPRTOOL, DBAUDIT/LOGLIST.
Take advantage of MPE’s account structure.
Enforce version control and naming standards.

A Final Exampie 22 Computer Insecticide

ABSTIRACT

Overview of HP's New Network Products

Bernard Guidon, Hewlett-Packard Company

In this presentation the new HP networking solutions and products introduced since the Detroit
Interex conference will be discussed. Included in this overview will be HP's Private X.25 Network,
StarLAN, and Network Management products. Guidon will focus on the key features that HP offers in
its network product line, including: Conformance to emerging international standards; Multivendor
connectivity; Flexibility to grow and change to meet customers’ needs and; A variety of WAN and LAN
network solutions.

A schedule highlighting the network presentations at Interex will be available at this talk.

EFFECTIVE INFORMATION NETWORKS

COMBINE FLEXIBILITY WITH SECURITY

by Howard Gunn

Vice President of Marketing

Gandalf Technologies Inc.

The development of distributed information networks is a growing trend in
all areas of business, industry, education and government. The evolution
is driven by the major benefits of such networks. For simplicity, we can
assume that the primary benefits are greater productivity and a sharper

competitive edge through timely transmittal of time-sensitive information.

However, the proliferation of distributed information networks also

increases the possibility of sensitive data files being used incorrectly,
being fraudulently manipulated or even maliciously damaged and destroyed.
Network managers must take a series of precautionary steps to provide the

best possible protection against unauthorvized network penetration. This

paper examines the trade-offs between speed, timeliness and flexibility on

one hand and security problems on the other. It concludes that network

managers must take specific actions to insure that physical and logical

security is achieved and that other precautionary actions may be necessary.

Furthermore, the protection strategy may even impact the communication

architectures being deployed in the networks that are being protected.

why Information Networks

The personal computer (PC) is perhaps the symbol of the modern office;
it, the minicomputer and shared user micro have had a profound effect on
data processing operations. The growing popularity of these computers,
coupled with the availability of powerful software tools, has resulted in
an explosion of stand-alone data processing units in many different

departments of organizations throughout the world.

But the computers in these separate department or business units normélly

function only as individual entities. Data generated by staff using the

computers often remains within their personal orbit and is not readily

available for profitable use by other personnel in the same department,

rmuch less in other departments.

This restriction on the availability of data or information (processed

data) can have substantial negative impact on the effective operation of an

organization. At best, it leads to unnecessary and costly work

duplication; at worst, important work never gets carried through to a

fruitful conclusion. For example, marketing data may be continually

rekeyed, regenerated or reformatted by different departments by people who

are unaware of or unable to access associated data in other locations. Or,

business unit staffs may not even launch productive projects, if they are

unaware that the data required for implementation is available in some

other department.

Impediments such as these are now being solved through the development of

information networks. These networks promote information exchange by

interconnecting PCs, departmental minis, and shared user micros with other

corporate computers, databases and their associated terminals, printers and

other devices.

Ideally, the result can be one cohesive network in which authorized staff
can speedily and efficiently access computers, other system resources and
application software from any terminal device, regardless of whether they
are sitting in the same room, building, city or even country as the host
computer. But, in developing this total information network flexibility,
it is necessary to seriously consider how data network security is
implemented and how it should be enhanced to insure information protection

in a distributed network.

The Security Problem

Protection of data and information from unauthorized access or use is the

basic security problem for the MIS manager. Although the unauthorized use

of information was a problem before computers were invented, their advent

has certainly not slowed mankind’s desire to gain an unfair advantage from

timely information. And, in some ways, computers, databases and

application software have made it easier.

As information networks grow in size, the sécurity problems expands.
Information networks bring intc play a growing number of computers,
terminals and other devices with perhaps thousands of access points with
potential for unauthorized entry. In addition, the networks are oftentimes
designed to permit public network access over phone lines. These public
accesses have often used low level security procedures because individuals
using the public network wanted fast access to information without

resorting to complicated sign-on routines.

Computer hackers are perhaps the most well known example of an ocutsider
gaining unauthorized access to computers. The movie "War Games" was a
chilling example of their impact. Normally lacking criminal intent, these
amateur computer buffs simply want to prove that they can "crack" a system.
However, in the process, they can cause significant damage to or even

destruction of valuable computer files. And there is no way of telling how

much real-time is consumed just defending against the hacker.

Another type of outsider is the person who attempts to gain unauthorized

access to a computer for fraudulent purposes. These purposes might include

manipulating computer files to credit bank accounts, creating false

payments or tapping proprietary data, such as sales results or customer

lists, for resale to competitors. Embezzlement by phone could one day be

the easiest crime to commit.

These external threats are significant sources of security problems. But,

internal threats in the form of dishonest or disgruntled employees who seek

unauthorized access to sensitive and restricted information are even more

important.

Dishonest employees, for example, may try to obtain customer lists or other

computer files for their own advantage. Disgruntled employees have been

known to gain entry to computers to delete or even destroy information

vital to the existence of the organization.

I know of an example where a fired programmer inserted an internal loop in

a Materials Requirement Planning (MRP) application that took his

replacement seven weeks to correct. During that interval, the automated

procurement processes tripled the inventory of raw goods for the company.

Consequently, there is a strong need to achieve effective protection

against unauthorized access to computer files in an expanding network

environment. This need can be better met if the management of an

organization recognizes the gravity of the situation and develops a basic

understanding of how to solve network security problems.

Addressing Network Security Issues

The most effective way to solve network security issues is to build in

protection against unauthorized access so that it is an integral part of

the network process and operation. This kind of security can best be

achieved by establishing a number of protective barriers or security levels

between computers, data files, application software and users. But, to

understand how these network security levels function, it is first

necessary to discuss security measures in a general context.

For practical purposes, there are five general levels of security necessary

to deal with the complexity of a distributed network system. They are:

1. physical
2. Logical
3. Computer

4, Application

5. Access

Physical security deals with the relationship of a physical terminal

location in the environment and how it is secured. Logical security deals

with the terminal’s ability and functionality specified by the network

manager to the terminal location when attached to the computer. Computer

security itself deals with the ability of the user to input adequate

information to pass a software-oriented sign-on test, established in the

computer software, given the terminal had an acceptable physical and

logical configquration. Application security deals with the ability of a

user who has passed physical, logical and computer tests to pass further

software—-oriented tests to allow the user to run an application program.

Access security is the terminal-to-network transport connection security

that requires a terminal location to pass physical and logical tests while

the user passes access and application tests before being interconnected to

a processing computer or application. This fifth level of security is just

evolving as a need in distributed processing networks, where physical and

logical screening tests may no longer be relevant. Gandalf and others

provide this access security by physically divorcing terminals,

workstations and PCs from hosts and building "switched" connections that

are "authorized" by software tables. Figure 1 illustrates the traditional

connection and Figure 2 illustrates the access network connection concept.

In a traditional sense, physical security is based on where you put the

terminal and how you protect against unauthorized access to the site.

Logical security is typified by IBM’s hierarchical SNA structure.
Terminals can only perform specified functions that are related to their
physical and logical attachments parameters that are spelled out in
software tools. Such terminals traditionally had to also pass computer and
application screening software, assuming every physical/logical
relationship was predefined. ASCII/ANSI type computer systems used this
same basic philosophy, even though user locations were not physically
defined, nor logically addressed within the computer tables. This
inability to physically or logically define a user led to a series of
additional computer and application screening programs that were intended
to thwart security penetration. As with SNA, the internal
software-oriented testing assumed the terminal was physically secure at

RS-232/RS-422 distances (50 to 5000 feet), on-premise.

The proliferation of physical and logical configurations that now include
public network access (dial-in and/or X.25) presupposes that traditional
computer and application security software would be an adequate means to

insure information protection from an unsecured source. In fact, public

access created the opportunity for the hacker to match wits with the

security provisions of the computer and the application software. Although

we have no proof, general wisdom implies the hacker always wins, unless a

new level of security (access} is added to the network.

A second physical configuration that increases the risk of security

breaches are those associated with the development of non~addressed local

area networks (LANs). Typical LANs, using carrier sense multiple access

with collision detection (CSMA-CD) schemes, presuppose that the attachment

to such a network is tantamount to unrestricted use of the computing

resources, transmission resources and application software on the LAN.

Ethernet is a typical application of this "party line" strategy. The

LAN owner and the network manager must assume that basic computer and

application security, plus physical location protection on-premise can

thwart any unauthorized usage or unwanted peeking at authorized

information. Much like the conventional wisdom that implies the hacker

wins whenever public access is allowed, conventional wisdom says the

unauthorized user wins against computer and software security measures when

users are connected to a party line bus structure.

The physical and logical shortfalls of the ASCII computer and non-addressed

LANs coupled with the wide scale introduction of public access connectivity

have led to the deployment of switched security systems, such as Gandalf’s

Private Automatic Computer Exchange Network (PACXNET). As mentioned, these

access security units divorce the user and the public network ports from

the computer and allow the network manager to create physical and logical

address and screening levels for each terminal, user and access port,

independent of where the computer application security resides.

This form of switched access security allows the network manager to revert

to the very basics of security provisioning. A specific port or terminal

can be given software-defined functionality based on all four levels of

security (physical, logical, computer and application). Access security

simply relates all four levels simultaneously, before allowing the user to

be connected to a computer for sign-on. This additional layer of security

makes penetration of computer and application software extremely difficult,

while still supporting public network access and CSMA-CD transactions on a

CPU-to-CPU basis. In fact, on the most sophisticated security systems,

such as PACXNET, the same user from a different terminal may dynamically

redefine form, fit and function of the terminal, but only to the extent

authorized by the security software of the network controller.

Computer security may still be breached internally, if an employee somehow

finds out the access procedure of another. This kind of breach may allow

an unauthorized user to gain access not only to the computer but to

specific computer files for which she/he may not be authorized.

Sophisticated access security systems, such as PACXNET, protect against

this eventually by allowing a computer user to dynamically change their own

passwords and by allowing multiple user names and passwords from the same

terminal, based on the application requested.

Sophisticated Security

Switched network controllers provide a level of sophisticated security by

acting, in effect, as a "doorway" or “guard" for the computers which they
serve. The network units perform this security function by being able to
restrict terminals to accessing some computer services or databases but not
others.

)
This kind of destination security requires the network unit to query the
terminal user to establish which computer service to access. The terminal
user simply indicates the service desired. The network control device
determines if the terminal is permitted to access the computer that
provides the service. If the answer is positive, the network requests
entry of a password associated with the application service. After this
password is correctly entered, the network unit determines if the terminal
and the desired service and the user are authorized to access specific data
files stored in the computer. If the network determines that the terminal
is not permitted to access this computer or the application, the connection
request is terminated imméaiately. If the total request package is
authorized, the network unit builds a path to the computer and application.

This path building is commonly called dynamic switching. In some cases,

the network actually signs-on to the computer and the application (i.e.,

user does not have to know computer or application sign-on).

This sophisticated network control of computer access and application

security by terminal location, destination requested, user name and

password convention provides a very effective form of access security,

without reducing the flexibility and user-friendliness of network

operations. But, each user device is only allowed to access computers and

applications authorized to the physical, logical and user names specified

by the network manager.

For example, assume an accounting department operates a PC, which is also

used to access the computer running an organization’s payroll system. For

security reasons, no other terminal or PC is permitted to access this same

computer and application. But, the president’s terminal and the president

himself are permitted to access all computers, applications and files on

the organization’s network. These incompatible requirements are typically

handled through dynamic reconfigurations that can be built into the access

control database.

when the president is in the sales office, for example, and wants to use a

local terminal to access the restricted computer containing the payroll

data, he can invoke the dynamic user/terminal reconfiguration capability.

This user-enabled reconfiguration allows access security to be dynamically

modified for a user by defining specific hierarchical password and user

codes that enable the terminal to perform any function authorized by the

network manager. This kind of sophistication is actually an advanced form

of access security that is only available on a "networked" device.

Advanced Network Security

The most advanced approach to network security and flexibility incorporates

this dynamic ability to reconfigqure security operation by user name and

passwords. This advanced network security level causes the network, rather

than, or in addition to, the destination computer, to decide if a

particular user is permitted to access specific computers only from his own

terminal or from a terminal group or from all locations. It is based on
network coded user names which have been approved by the network manager
and passwords which can be changed by users themselves, at any time, but

are otherwise "locked-in" by the network.

Under this approach, a user can access computers in a network from any
pre-designated physical or logical locationi At the request of the
network, the user first enters his/her coded user name. After a network
check, the user enters his/her password in response to a message. In this
way the security configruation allocated to the user can follow the user
around an organization. It also provides for billback and security flags

at every location.

Based on the user name, password entries and the physical and logical
parameters of the access point, the network determines which computers can
be accessed by the user from that access location. This eliminates the
need to restrict computer access on the basis of which terminal is being

used. The user then proceeds to pass through the same basic or first level

of security as before, by identifying the computer service she/he wants to

access and entering its associated password. Once connected to the

computer, the user also follows the normal access procedure. This variable

user/terminal security is an excellent enhancement to all networks. It is

particularly valuable for sites using dial-in access arrangements or for

multiple locations that share computers through networking.

In practice, the network determines "who" is calling in and implements

security accordingly. Additionally, the advanced network security may also

require that a requester be cutoff after the calling sequence has been

used. The caller is then called back by the network at a specific phone

number or terminal address from which a specific user is authorized to

operate or which has been pre-arranged by the network manager. This

"dial-back" enhancement can also be used to minimize transport expenses by

reversing the calling pattern to the central hub where large trunk groups

or bulk tariff services apply.

Advanced Security Benefits

The more critical the information, the more advanced the network security

needs to be in terms of achieving maximum network flexibility as well as

protection against unauthorized computer access.

In PACXNET, for example, maximum user flexibility is achieved by allowing a

user to access any computers from any point in the network. This means

controlled computer access can be attained via dial-up phone or X.25

connections from anywhere in the country or even the world without fear of

security breaches. In addition, users can even be electronically messaged

by name at whatever terminal they sign-on to the network.

Total network security is also improved by divorcing user connections from

the computer port. This can prevent unauthorized users from getting into

the network, much less accessing a computer file. For example, in

direct-attach networks, such as Ethernet, SNA and most LANS, an

unauthorized user can get into the computer by simply gaining physical

access to a terminal. But, under the advanced security levels of PACXNET,

an authorized terminal cannot gain access to the network or to computers
unless the user knows both a network manager-defined computer/application
name and a user-specified password. And, if extreme security is needed,
PACXNET can even allow the user to change passwords and have specific
passwords for specific applications. These features are designed to
successfully prevent penetration through expansion of the permutations

needed to gain access.

Use of this advanced security level also makes it possible to produce an
audit trail of network usage showing which users signed on from which
terminals, to which computers, for which applications, on what day and for
what time period. Another side benefit of advanced security is that user
authorizations can be quickly and efficiently rescinded from the network.
By making only one entry, an MIS manager can revoke a user name from the
centralized control system, immediately eliminating the access capability
from all sites. Hence, there is little danger of penetration by

disgruntled employees.

Capability Affected By Security

Information is the lifeblood of an organization. The purpose of networking

computers and users is to circulate this lifeblood to all parts of an

organization in a timely and flexible manner. Security measures, on the

other hand, are used to make sure none of the lifeblood is leaking out.

Basic--and even some sophisticated-—-security measures can sometimes hamper

network flexibility while failing to completely close the door against

unauthorized access and information loss. The most sophisticated systems,

such as Gandalf’s PACXNET, divorce terminals, users and computers and

build authorized connections that have passed advanced screening tests

before allowing a user-to-computer transaction. If the lifeblood is

important to the company, it behooves network managers to consider these

most advanced levels of security, even if it changes the network

communications architecture, expecially if the change also produces more

user-friendliness and flexibility.

-end-

' Jrepueg

uoiJvUUO)D
[eaisAyd
uQ paseg
uonezuoyiny
Buiuaaids Buiusasog 2607
, piomssed aJemyos
vu _
O 1senbay ainpadoid
uoneoddy uo-ubis J v v_m.mm"_
fedts
M
weshoid
v i3indwo)
UOI}9UU0,) [E20] [euonipel]

I 3HNOIL

jrepueg

Buluaaiog Buiusaiog
‘Eu..mohn_ piomssed alemyos
O 1sanbay aInpago.d
uopeoljddy uo-ubig
Bunsa)
uonezuoyiny
:ow”@&< uonezuoyiny Bulusalog BuiugaIdg
Jandwios [eo1607 piomssed aIeMyos
BUO
: -._._._mu< ysenbay ainpadoid
uonos310.d XHod soueg — uo-ubig
weusboid o1
v Joindwion

$159] a0IAIBG
puy uo-ubig
i)y g vod

01 yied piing

uonoaUUoD)
[eoisAud
uo paseq
uonezuoyiny
eoibo]

vV Hod

g uod

J9jlonuod

ANoag ssa0oy

TOTo9UU0,) WIOMION SS90y DUINOAT

viseq
[eaisAud

uojoauU0D
l&@l‘\

¢ 34NSOId

ABSTIRACT

Improve User Productivity with
Menu Handlers

Larry Haftl, Systems Resources

In our profession, “Productivity Improvement” usually refers to creating software faster/cheaper/
better. By improving the user/machine interface it is possible to show productivity improvement
throughout an entire organization instead of one department. A menu handler utility can be a very
powerful, inexpensive tool for improving that interface. This paper will discuss the evolution, current
state and uses for menu handiers on the HP 3000. Emphasis will be on increasing end user
understanding of and ease of use of system by employing dynamic menus.

THE ROLE OF FOURTH GENERATION LANGUAGES
IN THE LIVES OF 3GL PROGRAMMERS

by
Suzanne M. Harmon
AH Computer Services, Inc.

8210 Terrace Drive
El Cerrito, CA USA 94530-3059

THE ROLE OF FOURTH GENERATION LANGUAGES
IN THE LIVES OF 3GL PROGRAMMERS

In my early years of programming, we did everything in
assembler language. With assembler language, one nmeumonic
equated to one machine instruction and was accompanied by
one or more operands such as a register number or memory
address, You knew the octal or hexidecimal (base 16-IBM)
representation of each instruction and could read a memory
dump as easily as you would the Sunday funnies, It was
wonderful., It was simple., It was straightforward., The
programmer had complete control. When you compiled your
source program the machine punched your compiled object out
onto a nice little deck of 80-column cards, and if you
needed to make just a minor change you could fix the object
code card and reinsert it into the deck.

After many years of this secure world, somewhere in the
early 70's, the then current boss declared that we were to
become a COBOL shop. The reasons, he claimed, were simple:
-~ COBOL was the way of the future
- COBOL programs could be developed faster than
assembler language programs could
- COBOL programswould be far easier to maintain than
assembler language programs
—~ COBOLrequired a much shorter learning curve than
assembler language
- Long-range, COBOLprogrammers would be more plentiful
and less expensive.

The bottom line - the company would save huge amounts of
money on software which was rapidly approaching 33Z of the
average data processing budget. An additional benefit would
be shorter development cycles.

As programmers, our reaction was instantaneous and unanimous
-- yuck! COBOL was verbose, slow, a memory hog (we had just
upgraded to a 32K memory machine -- virtual memory was still
a twinkle in someone's eye), and took away control from the
programmer to the point that you would never know what the
machine was doing. The only consolation was that we could
still get memory dumps, which enabled us to figure out
exactly what machine code each COBOL instruction was
generating. We were appalled, of course, by its
inefficiency.

4GL Devel -1-

I had somewhat forgotten this whole experience, now some
fifteen years past, until recently. I was discussing with a
client the difficulty many 3GL programmers have
transitioning into the 4GL world, and he reminded me of our
experiences transitioning to 3GL's (though we didn't really
use fancy names like 3GL then). It was that discussion
which inspired my interest in attempting this paper.

I started working with fourth generation languages about six
years ago. I will not say that there have been no
frustrations, but I would now refuse to develop a system in
a 3GL, I would consider it a waste of my time and the
client's money. However, developing with a 4GL is a very
different way of approaching application soclutions than
programming with a 3GL. Therein lies the key -- to be
successful with 4GL's we must transition from the role of a
programmer to the role of a developer.

In a traditional 3CGL development environment, the
development cycle proceeds something like this:

Conceptual design/
functional spec
<::::::>Detail design/

programming spec

Programming/
unit testing

>
N System testing

When the detail design is accomplished, the system is broken
into definable program pieces before programming begins.
There is good reason to have solid specifications before
coding begins, because making programming changes and
repeating test cycles can be extremely time consuming and
costly,.

4GL Devel ~2-

In a traditional 4GL development environment (if there
exists such a thing), the development cycle proceeds
something like this:

Conceptual design/
functional specification

Development of prototype
system & user review

Refinement of prototype
into finished system

__\ User pilot & implementation

There is no detail design phase producing programming
specifications. Program pieces are not predefined. For one
thing, very few 4GL's, and certainly not the more widely
used 4GL's, give you a clearly defined "program" concept,
These products are all oriented towards

- a screen

- a report

- a process
The "steps” that a developer must use to accomplish these
depends on the 4GL and the task at hand. Keeping this basic
difference in mind, let's proceed to the "hurdles" a 3GL
programmer faces in becoming a 4GL developer.

Hurdles:

1. Beginning the development cycle without knowing your
product (4GL). This is by far the most common problem,
There is a new $250,000 project that is behind schedule and
critical to someone's career. Management buys a 4GL to
"save the day." They expect the MIS staff to wholeheartedly
embrace the new product and immediately realize the kind of
productivity gains promised by the vendor.

Result: Resentment and/or hatred of the product by most, if
not all, the staff, Failure of the project, or at the very
least a very bad rep.

Other possible side effects: Trashing the 4GL and returning
to a 3GL. Blame placed on 4Gl vendor for misrepresenting
product.

4GL Devel -3-

Suggestions: Don't use a new 4GL for the first time on a
major new development project, Use it initially for
enhancements to existing systems or extremely small new
systems.

Get proper training. If there are more than a couple of
people who will need to know and use the product, get custom
training in-house. In the end it will cost you less because
your time will be used more effectively.

If you have no choice but to use the product for the first
time on major new development, bring in people who really
know the 4GL and how to work with it., Let them direct the
project and listen to them.

2. Specing the project as you would for 3GL development,
then trying to develop it with a 4GL. This is a real
killer, and what I otherwise refer to as trying to fit a
round peg into a square hole.

Result: Most frequently, the programmer will claim that the
4GL lacks functionality and sophistication enough to do the
task and will resort to their 3GL of choice to accomplish
the task at hand.

Other possible side effects: Those programs which were
written in the 4GL will be incredibly inefficient and may
"look" out of place.

Suggestions: Design "into" your 4GL. ZEach 4GL has its own

unique "style.," It is critical in developing an attractive,
effective, and efficient system that you design for that
style. This includes data base design, screen design,

report design, user interface, even test plan. In fact,
this style is so critical to the way your finished systems
will look and act that you should learn as much as you can
about it before you even choose a 4GL. This is facilitated
by translating the functional spec directly to a prototype,
and working the prototype into a finished system.

4GL Devel -4~

3. Assuming that you will have the kind of logical control
you had with a 3GL. I have found that typically 3GL
programmers feel most comfortable with COBOL generators
which claim to be 4GLs or 4GLs which are entirely
procedural, and are thus as close to being a 3GL as
possible. These products will help somewhat with the cost
of initial development, but long term productivity gains due
to ease of maintainability and shortened development cycles
as familiarity with the product increases, will be lost,

Result: What most frequently happens when a 3GL programmer
is reluctant to relinquish control to the 4GL is that they
take every opportunity to use whatever procedure code is
available with the 4GL they have, This usually results in
lengthy code to do what could have been done automatically
with default or design statements, thus defeating the entire
purpose of the 4GL.

Other possible side effects: The programmer feels the 4GL
is cumbersome, lacks functionality, and it would have been
easier to use a 3GL in the first place. His boss 1is
beginning to agree.

Suggestions: With a 4GL, not only are you not going to have
the control you had with a 3GL, but a lot of what you do
will be guesswork or trial and error. There will be times,
many at first, fewer later, when you could do it much faster
in a 3GL than it will take to figure out how to do it with a
4GL. Build yourself a support group. Join your local users
group and exchange cards with people who seem eager and
willing to share what they've learned. Frequently 3GL
"techy's" egos are so big that they are embarrassed to reach
out for help with a 4GL. As a co-worker of mine said the
othef day: "The only stupid question is the one you didn't
ask!

4. Performance is unsatisfactory! If a prospective 4GL
user asks me three questions, one of the three will always
be: "What about performance?" The answer: "4GL programs
are not as fast as 3GL programs." This can be compounded
tremendously by the first three hurdles discussed above.
Inadequate knowledge about the product, inefficient use of
the product, and system designs which "conflict" with the
product can all contribute to additional degradation in
performance.

4GL Devel -5—

Result: The product may only be used where performance is
irrelevant, or may not be used at all.

Suggestions: First, review the three hurdles above. To
optimize performance you must know your product, get proper
training, make enough of a commitment to become experienced
with it, be willing to use trial and error, and get support
from others who have experience with the product. I have a
terrible habit. I build the system first and worry about
performance second, However, the advantage is that usually
for a period of two to four weeks, I turn my attention
totally, or as close to totally as I can, to tuning the
system. Many tools are available to help, depending on what
the problems are. Supertool, MPEX and Omnidex, as well as
many other products, offer tremendous performance
enhancements to the average system.

There is, however, another issue where performance is
concerned, Unless there is a serious problem with system
resources, performance should be in the eyes of the user,
not the eyes of the MIS person. Sometimes MIS people feel
they must put "performance standards" on systems in order to
maintain control, i.,e., all screens must have 3-second
response time. In fact, if the system has functionality
that greatly enhances the user's productivity with 8-second
response time, and the user is ecstatic, then it becomes
questionable whether there are performance problems.

Conclusion
The 3GL programmer who is transitioning to 4GL developer
will need to work on altering their mindset and their entire

approach to system development.

The following is a list of ten commandments to help you
through the ordeal:

1. I will read a section in my 4GL manual every day.

2, I will try at least one new function or feature of my
4GL every day.

3. I will not say it cannot be done in my 4GL until my
4GL vendor tells me so.

4GL Devel -6~

4,

10.

I will never resort to procedural statements until I
have made absolutely sure I can't do it with design
statements.

I will go to every meeting of my local users group.

If there is no local users group, I will talk to my
vendor about helping me form one.

Instead of abandoning my 4GL, I will try to rethink
problems to take advantage of my 4GL's functionality
and features.

I will not swear and have a tantrum when I can't find
anything in the manuals which relates to my question
or problems.

I will try at least ten ways to do something new which
I don't know how to do and can't find reference to
(reduce this by two every six months),

If I can't follow these commandments, I will find
another job.

4GI, Devel -7-

Implementing a System using
Enhanced Data Search Capabilities

by
Suzanne M. Harmon
AH Computer Services, Inc.
8210 Terrace Drive

El Cerrito, California
USA 94530-3059

As users gain sophistication and technology pressures us
towards a paperless society, improved techniques for complex
searches of data base information are becoming a necessity.

Omnidex is a powerful enhancement to the Image/3000 data
base management system. Using sophisticated inverted files
and binary trees, Omnidex allows rapid retrieval of data
records using any Image field identified for Keywording. It
also allows retrieval based on any combination of words or
values contained within key-worded data fields.,

The implementation of a large on-1line application system
(data sets of 250,000 to 1,500,000) using this product will
be discussed. Though development of the application was
well underway when the product came to the attention of the
project team and the user, the decision was made to retrofit
the system to take advantage of Omnidex.

The focus will be on:
— Why the decision was made

- The anticipated and real costs of the decision
- Where Omnidex was used and where it was not and why

- What the data base and application design
considerations were

- Discoveries made along the way

- How users perceive the system and the functionality
Omnidex provides

— Performance benefits and prices

Enhanced Search 1

The Environment

An Investor Services System for a large Real Estate
Investment firm.

- Large Data Bases
- 60,000 Salesmen
~ 500,000 Investors
- Many data sets over 1,000,000 entries
- Hi volume of on-line inquiries and changes
~ Dynamic organization with frequent system changes
to support marketing driven business

The Problems

Problem No. 1

Logical Data Base Structure -- multi-level hierarchical
relationship of the sales "organization"

10

100 Need name lookup

1000 Need name lookup

20,000 Need name lookup
Optional

60,000 Need name lookup

Need status lookup

Salesman may be temporarily "unassigned"

Enhanced Search 2

The first problem was a multi-level hierarchical data
structure representing the sales "organization."

In addition to the need to search for data based on higher
levels of the hierarchy (i.e., need to be able to search for
branches by region, territory and firm), name lookups were
required on most sets.

Image Data Base

ales err Firm Branc ales- Statu
egio No. No. o. n N¢/.

Sales Firm Branch ales-

Terr man

KSAM KSAM
Firm Branch
Name City

Disadvantages:
- Up to six paths per detail
- Not an "all image" solution
- Generic name (city) search only
- No multi-keyed access

Enhanced Search 3

Problem No. 2

Logical Data Base Structure -- Investors & their Investments
versus Investments & their Investors

500,000 300,000

An investor can own or have a “"relationship" with an
unlimited number of investments.

An investment can be owned by or have a "relationship" with
an unlimited number of investors.

When an Investor calls, we must be able to look at all
investments he/she is related to.

On Investors we must also have a minimum of:
- name lookup
- SS no. lookup
- address lookup

On Investments we must also have a minimum of:
- (Fed tax id no. lookup)
- Input batch/seq no. (from Order Processing) lookup
- Deposit batch no. (from Order Processing) lookup
- (Fund lookup)
~ Firm lookup
~ Branch lookup
- Salesman lookup
- Institutional Acct no. lookup
- Date of purchase lookup
~ (Legal Registration lookup)

Enhanced Search 4

Image Data Base

1V
no.

Investments Legal
reg

—> ADDL <
Investor

Disadvantages:

~ Twelve paths needed to the most important set

- Not an "all image" solution

- Generic name/address search only

- No capability for legal registration search

- Fed tax id and fund chains too long for image, in some
cases Investor no. chains too long for image

— Cannot find all investments in any way related to a
single investor with one search

— No multi-Keyed access

Enhanced Search 5

About six weeks into development, we were given a demo of
Omnidex, a then very young product. It was clear twenty
minutes into the demo that the enhanced data search capabil-
ities offered by the product met our needs perfectly in
several areas:

~ Works within image

- Provides keyed access without image keys

- No limit to number of "keywords"

- Allows for generic search, Keyword in context search,
boolean searching (i.e., and, or, not, etc)

~ Keywords may be "grouped"

- "Chains" may be of unlimited length

~ Repetitive, non-meaningful words may be excluded from
"keyword 1list" (i.e. Street, and, or, the, etc)

- Can search on more than one Keyword at a time

- Extremely fast searches on large volumes of data

What it means to our design:

Problem No. 1

- Logical masters become physical masters
- Name and address searches are completely flexible

New Data Base Design:

Sales Sales Fitm Branch Sales
egio errij/~ an
r
Not Keyworded: Keyworded: Keyworded: Keyworded:
Omnidex Name Name Region Region
Address Territory Territory
Firm Firm
Address Branch
Status
Name

_Enhanced Search 6

What it means to our design:
Problem No. 2

- Logical masters become physical masters

~ Name and address searches are completely flexible

- Items whose chains were too long for Image can now be
Keyworded

- Complete Keyword in context available for legal
registration

- Can find the exact investment sought by searching for more
than one Keyword at a time i.e., legal reg: Suzanne Harmon

Purchase date: 041586

"related”" to an investor

-~ Can find all investments

New Data Base Design:

nvestors vestment/s

Keyworded:
Grouped: Ungrouped:
Investor no. Fund
Trustee (Inv) Firm

Mail to (Inv) Branch

Keyworded: Check to (Inv) Salesman

name K1 to (Inv) Inst. Acct
address Date of Purchase
ssn Fed tax ID No

Input Batch/seq
Deposit Batch

Keyworded: Keyworded:
Investor No. Legal registration
(grouped) lines

What we did not Omnidex:
Sales History Data Base

\by by by /by by
Region / Terr., [Firm / Branch/ salesman

Enhanced Search 7

Why?
- Accessed on-line infrequently, and then only by Key
-~ Used primarily for a plethora of batch produced sales
reports

Order Processing Data Base

Input Batch
eader

Receipts

Why?
- Heavy input, very little inquiry, and then almost
always by Batch number
~ Orders rarely of interest for more than 24 hours

Design Consideration:

An Omnidex "domain"

Maste

- Make "logical masters" image masters. A logical master
usually represents a person, place or thing that has a
"life" of its own, i.e., Customers, Orders, Parts, Vendors
Employees, etc.

- Put occurrence, transaction and optional information in

image details, i.,e,, order lines, comments, payments, job
assignments

Enhanced Search 8

- Keyword all fields which will enhance on-line inquiry
or provide "extracts" for reporting on subsets of less
than 507 of the data base

- Don't expect to get it perfect the first time around;
changes are relatively easy

- Exclude "words" which are obviously unnecessary

Discoveries along the way:

1. Could not do record-specific finds on keyworded details
i.e., alternative design

Firm

A search on Keyworded item in Branch, i.e,, City = San
Francisco, would return all the firm no.'s of firms with
qualifying Branches, would have to read down the chain to
find the specific branch.

Solution: Stick to design considerations discussed above.
Note: Record-specific finds have now been added with the
newest release of the product.

2. Excluded Keywords do make a difference.
For example, during conversion had 250,000 records with
Fed-tax-id = 0's. This, in effect, was a 250,000 record
chain. Changing and deleting records became relatively
high overhead. In this case, O's should have been
excluded.

Enhanced Search 9

3. Single Set Reloads

Each Omnidex domain creates three additional Image data
sets at Omnidex install time, one master and two details.
The two details should be reloaded frequently, depending
on volatility of data, for maximum performance. This is
a very easy task using DBMGR by DISC which has a Single
Set Reload facility, or any number of other utilities
available.

4, Initially, all Omnidex masters had to have J2 Key. J2
Keys, in fact, are very efficient because the Key value
is effectively the record location. This is fine, unless
the highest value of your J2 Keys minus the lowest value
ever exceeds the capacity of the data set.

5. Initially, you <could not do a find where more than
13,000 records qualified., Since many of our "chains" had
more than 13,000 entries, our reporting capabilities were
significantly impacted, and we had to switch to Supertool
extracts in some situations. The find is now unlimited
except for generic finds, ranges, and "multifinds".

6. Because of the size of our data base, re-indexing (i.e.,
due to adding or deleting Keyworded entries, etc.)
originally would have taken a week. DISC responded
immediately by improving the Buildfast utility so it now
takes 12 hours,

7. Stack-Size Considerations
Because the system is designed for user-friendliness,

i.e...
Menu
Firms Branches Salesman
etg ’///’—> > etc
Branch Salesman _////’ Investment \JW
lookup lookup lookup

And is written in a 4GL, we experienced stack overflow
problems along the way. DISC responded by making certain
stack efficiency enhancements, and helped us identify

Enhanced Search 10

changes to the way we were doing things which cut stack
somewhat! Stack still remained a problem in certain
"multi-depth" screen situations.

Solution: Used certain "user-transparent" tricks to
reduce the depth of screens.

Learning Curve

Took one week to convert the Firm/Branch/Salesman system
from traditional Image to Omnidex.

Performance and Overhead

OMNIDEX
One Key find

Multi Key find

Generic, Keyword in
Context, ranges, etc

Put new record-
must set-up Keywording

Change record (no Keys
affected)-simple update

Change record (Keys

affected)- update with
Keywording changes

Omnidex data sets
added to Image DB

Enhanced Search

11

IMAGE
One Key find

One Key find then
read serially to find
add'l keys

No Equivalent

Put new record-
must set-up paths

Change record (no Keys
affected)-simple update

Change record (Keys
affected)- delete
record, add record,
with all path adjust-
ments done twice

Auto Masters +
path overhead/record

User Satisfaction and General Comments

- Users love the system

Fast inquiry without having to know numbers and codes
Much more service oriented for customer

Avoids duplication of information

Alleviates need for hardcopy listings

Expanded system capabilities

- Easy to Support and Use

DISC an outstanding "support" vendor

New releases are frequent and address installed base
needs

Easy to learn and use

Interfaces with almost all 3GL's and 4GL's

Superior documentation

" Enhanced Search 12

ABSTRACT

4GL - The Controversy Rages On

Karen Heater, Infocentre Corporation

The HP 3000 community is buzzing about application development and fourth generation
Languages. This paper will review the definition and direction of fourth generation Software Tools
relative to their third and fifth generation counterparts, their associated benefits and the pitfalls which
must be avoided in order to ensure successful implementation.

The definition of 4GL’s requires a discussion of industry trends and emerging directions. Once
having defined and categorized the technology and the variety of product types which fall into this
category the paper will discuss that the impact implementation of a fourth generatioin strategy will
have on both the existing DP personnel and the users.

Without proper evaluation criteria and expectation settingthe implementation of the 4GL can
become unnecessarily time-consuming and costly.

The goal of the paper is to assist the HP 3000 community in assessing, selecting and successfully
implementing the fourth generation software. As such, each of the stages from evaluation through to
implementation will be addressed through a discussion of the appropriate goals, criteria,
expectations and approaches which will take the organization through this cycle smoothly and
successfully.

ABSTIRACT

4GL and The Changing Role of
the Programmer

Karen Heater, Infocentre Corporation

Application development using fourth generation Programming LLanguages is now a reality. The
existing data processing professionals are competent, educated and comfortable in the use of
traditional third generation programming tools and methodologies.

With fourth generation Software, the task of implementing application software systems becomes
ane of telling the HP 3000 what to do but, not necessarily, how to do it. The job entails the intricate
involvement of the various end users.

This paper will focus on the changing role and expectations of the programmer in HP 3000 data
processing environment as a result of the implementation of fourth and higher generation
programming tools. It will address the changes in the required skill set and the considerations
necessary to ensure the smooth transition to programming of the future for today’s existing data
processing professionals.

ABSTRACT

Networking the Mini and the Miro —
Distributed Application Processing and
How To Use It

Karen Heater, Infocentre Corporation

As fourth generation software and data communications technology becomes more prevalent
throughout the HP 3000 community, the opportunities available for networking the mini with our
micros grows significantly.

With many organizations reaching and exceeding the computing capacity of their HP 3000, the
concept of redistributing the load and moving some of the application processing to the micro
computer becomes very attractive.

Distributed processing is a reality today, but for many shops it represents a new frontier that should
be approached with caution, in a premeditated way. This paper will take a close look at Distributed
Application Processing, involving the networking of the HP 3000 with micro computers. We will first
introduce some of the concepts at work, then describe the various data communication topoligies
that can be implemented. Having set the foundation for the discussion, we can move on to application
design possibilities, investigating how new applications might be designed in order to capitalize on
the system resources made available through the networked configuration. Along the way, we will be
providing some guidelines for effective use of this “Distributed Application Processing” concept
based on the capabilities, strengths, and weaknesses of the various system components (both
hardware and software) within the network.

Never Take the Default
by Jeff Hecher

Apogee
4632 W. Frankfort Drive
Rockville, MD 20853

Ask some of the many users of HP3000 computer systems why they prefer it to the competi-
tion, or to their old system. The typical response will be because it’s “friendly" or because it’s
"easy to use”. The term "user friendly" generally refers to the ir‘rractive nature of the
operating system. The alternative to the interactive system is the "batch” system, which is
not very easy to use at all. Un-ambigious, non-cryptic commands and clear, understandable
error messages are also "user friendly”. But "user friendly" also refers to default values for
optional parameters.

To appreciate just how much default values contribute to ease of use, just consider the MPE
:FILE command. Imagine the effort required to merely list all of the parameters, not to
mention choosing appropriate values for each. Now consider some of the other MPE com-
mands with nearly as many options -- :BUILD, :RUN. _HELLO, :JOB. Without the
defaults for these commands, how friendly would such a system be?

To new users of HP3000 computer systems, (programmers, managers, and ordinary folk alike)
the usefulness of default values becomes immediately obvious. Often, defaults are brought to
light on day one, when an HP system engineer installs the computer. While explaining a
command, a frequently used phrase is "Oh .. dew’t worry about that, The system will take
the default.”

While this is clearly one of the advantages of having purchased an HP3000, it sets an un-

desirable precedent. Most people are lazy. The "don’t worrv about it" philosophy encourages
laziness. Or at least does nothing to discourage :* Lkxplaining options to new users of the

Never Take the Default

system 15 confusing. But once a user is familiar with the system, only laziness prevents more
sophisticated and more efficient use of MPE

Quite often it will turn out that the system default on a given parameter is in fact the best
choice. But equally as often, choosing a more appropriate value can improve system perfor-
mance across the board. From system configuration and system resources, to CPU efficiency
and user response time.

There ace many kinds of defaults ihe obvious ones are the default values in the various sys-
tem commands already mentioned. But there are others. There are "default" ways of doing
things. There are "default" algorithms used by programmers. There are "default” system con-
figurations. There are “default” names given to things. Obviously, some of these are more
"style" or "procedure” than default, but the idea is the same.

Throughout the remainder of this paper, examples are given to illustrate a point. Sometimes
the example is frivolous or contrived, but the idea is to consider the options and to make a
conscious, intelligent decision. Not to just take the default because it’s the default,

System Security

The prevention of unauthorized access to computer systems is a very popular topic ot discus-
sion these days. And not only in the HP3000 community. It’s not that there has been a rash
of reported break-ins at HP3000 installations, but there has been so much publicity recently
about this aspect of system security. There are other, less spectacular, but more realistic
aspects of system security, such as -- data integrity, system backups and backup tape
management.

Ask an HP3000 system manager what the biggest threat to the system’s security is, and he
might say "unauthorized access via dial-up telephone lines". He would be wrong. Ask him to
list all of the causes of lost data from the system and he will reply with some of these:

1) MPE System Failure

2) Hardware failure

3) Accidental purge of a file

4) operator :RESTORED files instead of :STOREing them
§) Tape 1/0 errors on backup or DBUNLOAD tapes

Actually, very few HP3000 computer systems have ever been broken into as the result of
random microcomputer searching for modem answer back tones. Even then, most attempted
break-ins are from ex- or current system users. After all, they already know the phone
numbers. Certainly no one is not going to try breaking-in from the terminal in their office.
The console error messages would give them away. The anonymity of the public switched
telephone network is much more assured.

Even so, the proper system configuration and selection of configuration options can help

prevent many of the weak links. Starting at the top, every system manager dreads coming in
to work in the morning and seeing this on the system console:

Never Take the Default

02:10/4#S289/102/INVALID PASS FOR "MANAGER SYS,PUB" ON LDEV #42
02:10/#S289/102/INVALID PASS FOR “MANAGER.SYS, PUB" ON LDEV #42
02:11/#5289/102/INVALID PASS FOR "MANAGER.SYS ,PUB" ON LDEV #42
02:11/#5S290/119/INVALID PASS FOR "MANAGER.SYS,PUB* ON LDEV #42
02:11/#S290/119/INVALID PASS FOR "MANAGER SYS,PUB* ON LDEV #42
02:11/#S290/119/INVALID PASS FOR “MANAGER SYS,PUB" ON LDEV #42
02:11/#S291/105/INVALID PASS FOR "MANAGER.SYS,PUB" ON LDEV #42
02:11/#S291/105/LOGON FOR: MANAGER.SYS,PUB ON LDEV #42

05:22/4S291/105/LOGOFF ON LDEV #42

This is what most people think of when system security is mentioned. But this is easily
prevented. Nearly every user in the HP3000 community knows about MANAGER.SYS.
Certainly every user who would attempt to break into an HP30UU computer system knows
who MANAGER .SYS is. A potential evil-doer does not even have to guess at a logon ID.

How is this easily prevented? Ever changing cryptic passwords?? Sophisticated logon

No. The most effective solution is the most obvious one. It’s a shame that you can’t just
remove MANAGER.SYS from the system. MPE itself "runs" as MANAGER vS. However, logon
access can be taken away from MANAGER.SYS by removing IA (Interactive Access)
capability.fi] In the same vein, remove MGR.SYS and OPERATOR.SYS as well. These user IDs
are merely the default system manager and system operator logon IDs. There is no reason to
necessarily leave them on the system. Why give someone a head start on breaking into the
system just for knowing a little bit about HP3000s? Instead of MANAGER.SYS, use something
like "11006S5G.SYS". Even system users who see the entry in a :SHOWJOB listing will not
know that it is the system manager or system operator.

There is no requirement that the system operator even be logged on in the SYS account. Just
because MPE does the operator a favor by automatically submitting :HELLO OPERATOR.SYS,
there is no reason to leave it that way. Not every HP3000 in the world needs identical logon
IDs. This only gives a break-in attempt a head start.

At the same time, and for the same reason, eliminate FIELD SUPPORT, MGR.HPOFFICE,
MGR.HPPL8S and MGR.TELESUP. These accounts and user logon IDs are provided by
Hewlett-Packard with the same capabilities, passwords and lockwords on every HP3000 in
the world.

LE R

In general, when creating new users, there is another factor to consider when selecting
options to the :NEWUSER command. The ;HOME= opt-vn assigns a default file group at logon

Never Take the Default

time. For some users it might be desirable to force the user to enter a file group at logon
time. Consider MANAGER.SYS or MANAGER ACCOUNTING or some other user with special
capabilities. To keep random, unauthorized access attempts from succeeding, force the group
name to be supplied.

When no home group is assigned to a user, and the group has a password, MPE will require
the group password to be entered also. Fven if the user is an account or system manager.
When assigning new graups with the :NEWGROUP command, the default for ;PASS= is no
password The theoretical microcomputer random letter generator would take thousands of
times longer when required to supply the group name and a group password. If passwords
are the only obstacles to access a system and it’s data, then be sure to actually use the
capability provided by MPE.

* &

One of the dilemmas faced by the designers of "user friendly" systems is the conflict between
user friendliness, and system security.[ii] How much help should the system offer when an er-
ror is encountered? When MPE was designed, there was not nearly the concern in the DP in-
dustry over security as there is today. The MPE designers chose for the user.

Suppose a sequential number dialing microcomputer finds an HP3000 dial-up line. When
some random text is entered, MPE kindly responds with:

EXPECTED HELLO, :J0B, :DATA OR (CMD) AS LOGON. (CIERR 1402)

System managers who fear random break-in attempts, should realize that MPE actually leads
the way into their system. Explicit, clear, easy to understand error messages are given right
along the way. After ":HELLO" is correctly entered, MPE then proclaims that it would like
a user name, then an account name, then a pasword, etc ... etc.

Fortunately for concerned system managers, this is merely the MPE default. All of the
warnings and error messages are stored in a disk resident file. Instead of the helpful message
above, a security conscious system manager can change it to something of little use to a
break-in attempt. Something which still conveys the general idea that an error has occurred.
Something like:

NOPE .
WRONG .
SORRY.

There are quite a few different helpful messages of this nature which could be replaced.
Messages explaining everything from "“NAMES MUST BEGIN WITH AN ALPHABETIC
CHARACTER" t0 "NAME GREATER THAN EIGHT CHARACTERS LONG" and "UNEXPECTED SPECIAL
CHARACTER". The messages are stored in the file "CATALOG.PUB.SYS". The MPE System
Manager/ System Supervisor reference manual contains information on how to modify or
replace any message in the file.

Never Take the Default

k&

More likely, and theicfore more t reatening than a bre- 1n, is accidental corruption of
data. It can happen so easily by running the wrong program, submitting the wrong job, or
purging the wrong file. A break-in attempt succeeds once in a blue moon. Purging the
wrong file or data item happens every day of the week. When creating new users and new
groups, there are ways to help prevent these sorts of accident By assigning combinations of
;CAP= with :NEWUSFR and ;ACC.>S= with :NEWACCT and :NEWGROUP commands, some acci-
dents can be prevented. The simplest case is the accidental :PURGLing of a data file or
program. By having users logon into one group, and having important files in another group,
the ;ACCESS= parameters can be used to deny SAVE access to non~-group users. Similarly, by
granting READ and EXCECUTE access, there should never be a need to :RELEASE anything.
Another default of the :NEWUSER command, SF /Save F. ., can be removed from users who
have no need to create or delete disk files.

Similarly, there are often programs and job files which are run daily or weekly or monthly
or whenever, which update data bases or running reports. Programs which make these
changes are most often run from jobs. Accidentally running one of these programs out of se-
quence can cause duplicated data in a data base or other corruption. Programs of this nature
can be kept from being run accidentally by taking away IA ‘Interactive Access}) from the
program file. They can still be run from jobs by leaving BA (Batch Access) intact.

IA and BA combinations are assigned with the :NEWUSER :NEWGROUP and :PREP commands.
Programs which are only to be run from a job, only need BA. Users who do not stream jobs
only need IA.

k%

Another all too frequent cause of lost data is re-recording over backup tapes, or
:RESTOREing a group of files instead of :STOREing them. Both of these accidents can be
prevented by using labeled magnetic tapes instead of the default unlabeled tapes, for offline
storage. Labeled tapes incorporate an expiration date in the header records. When mounting
a labeled tape, MPE attempts to read the header records assuming that it is a labeled tape. If
an invalid header is read, the tape is mounted as an unlabeled volume. If it is a labeled tape,
and the expiration date hasn’t passed, then the system will write protect the tape volume.
When reading or writing a labeled tape, the file name given in the :FILE command must
match the volume name on the tape. This makes mistaking one tape for another much more
unlikely.

There has been much ado about MPE’s ability to correctly read and write labeled magnetic
tapes (either IBM or ANSI standard). Years ago, this was true enough. But recently, HP has
finally been able to handle labeled tapes in latter day revisions of MPE.

Probably the single most tangible system resource is free disk space. Utilities exist to monitor
the amount of free disk space, re~block and copy disk files. Surprisingly, given the
obviousness of disk space usage, optimization is rarely attempted, and even then, never on a

Never Take the Default

large scale. HP3000 system managers seem to perceive disk space as an entity beyond their
control. They simply wait until there is no more free space left, and then call their HP sales
representative t~ buy more. While there may seem to be no alternative, and certainly no
self -respecting salesman will turn away a customer, a little bit of knowledge goes a long way
in saving disk space.

Every HP3000 system has hundreds, or even thousands of text files which are taking up sig-
nificantly more disk space than necessary. This is due to the "card image" nature of the MPE
file system. An 80 column text file with only a few words per line, or even blank lines, still
contains all 80 characters. The trailing spaces are really there. If the file is a numbered
EDIT/3000 file then the line numbers add another 10% to the disk space used.

Thus is merely the MPE default. Fixed length records are only required if the data file is to
be randomly accessed (IMAGE/3000 data base files or editor "K" files for example). If
sequential access is sufficient, then variable length record text files take up only as much
disk space as necessary. EDIT/3000 (:EDITOR) provides an option (SET VARIABLE) which
will keep text files in variable record length format. Variable length record files are com-
patible with most MPE subsystems, most third party software, and with the language com-
pilers. One notable exception is TDP/3000; it cannot handle variable record length files.

There is nothing magical, mysterious, or deficient about variable record length files, but some
people and some installations refuse to acknowledge their utility or even their existence.
This is probably a hangover from the card reader days when every input card had precisely
eighty data characters. No more. No less. The MPE manuals still refer to the first line in a
job file as the "job card".

Even so, for people who absolutely, positively must have fixed length records, there is no need
to subsist soley on editor 80 byte numbered files. Both EDIT/3000 and TDP/3000 have SET
LENGTH commands. these commands set the record width of the text file. There is no need
for eighty column files for thirty column data. Imagine a mailing address file. Imagine
hundreds or thousands of names. Imagine similar files all over the system, in dozens of dif-
ferent accounts. Now imagine all of the other text files which have only have a few words
on each line. All of these files can be kept using much less disk space than they use by
default. Some less than half as much.

k%

Record length and record format are merely two of the many options to the FOPEN system
intrinsic. (and similarly the :BUILD and :FILE MPE commands) The second most effective
disk space saving option is the blocking factor. Unfortunately, blocking factor is probably
perceived as the most confusing and complicated option of all, and therefore most often left
to default. Depending on the file size, type, and record size, judicious selection of blocking
factor can save almost 50% of the disk space used by a file. (Fortunately, the MPE default
blocking factor algorithm will never waste over 50% of a file’s disk space)

Understanding blocking factors and being able to choose an appropriate value requires a

slight knowledge of the MPE physical 1/0 system, Data is stored in 128 word entities called
sectors. A sector is the only physical unit of storage. All sectors are alike and precisely the

Never Take the Default

same size. The record ‘e (the "logical" record size) of the file is superimposed onto these
sectors by the MPE filc .,stem. If a file’s logica] record size is half the size of a sector, then
the file system can fit two records into a single sector. This is a blocking factor of two.
Even smaller records can have even higher blocking factors. The highest possible blocking
factor is 128. (a one word record is the smallest possible record, and 128 will fit into one
sector)

A different default mechanism is used when the logical record size of the file is larger than a
sector. In this case, the default blocking factor is always one, and as many physical sectors as
needed are used for the block. These disk sectors are stored in contiguous locations on the
disk device. If a record is 129 words wide, it will use two full sectors of disk space by default
(admittedly a contrived example, but it is the MPE worst case -- 48.6% wasted disk space). It
is possible, unfortunately, to choose a blocking factor which is .gnificantly worse than the
MPE default. Counsider a one word wide file. The MPE default blocking factor would be
128, which is the best possible. If the blocking factor is anything else, then disk space is
wasted (The absolute worst case disk file, which cannot be created by default is a one byte
wide file with a blocking factor of one, the human’s worst case -~ 99.6% wasted disk space).
IMAGE/3000 attempts to improve the blocking efficiency for data base files, but manual
selection can still improve disk space utilization.

Improving disk utilization using the blocking factor involves forcing MPE to put more logi-
cal records into each block. This reduces (and most often can eliminate entirely) the wasted
disk space used by a file. Take a file with 192 word records. Using the default, two disk sec~
tors will be required. This will leave 25% ((256-192)/256) of the disk space wasted. By forc-
ing MPE to use a blocking factor of two, enough disk sectors are used to hold 384 words, or
three disk sectors, with no wasted space.

The same principal can be used for large record width files and small record width files alike.
A blocking factor value can be found which reduces or eliminates the wasted disk space used
by fixed record length files. A forty word wide file will have a default blocking factor of
three (128/40 = 3). This leaves 8 words per sector unused, 6.25% wasted. A better choice is
16 records per block using five sectors and no wasted space. Blocking factors are are
specified in the FOPEN system intrinsic call or in the ,REC= parameter of the :BUILD and
:FILE system commands. Blocking factors for IMAGE/3000 data base files are set with the
$CONTROL BLOCK= control statement.

Unfortunately there is no such thing as a free lunch. When increasing block sizes to very
large values, 1/0 system performance must be considered as well. More on performance
later.

LR B

Hewlett-Packard provides utility programs with MPE to display the current state of the disk
free space. These are frequently run by system managers and by ordinary users as well. This
is particularly true when a program is to be run which creates a large output file or uses a
large temporary scratch file. After running FREE2 or similar program and verifying that
there is plenty of free disk space, it is still possible to encounter a File System Error number
46 -- Out of Disk Space. This error message is somewhat misleading, since there clearly is

Never Take the Default

plenty of free disk space. The root cause of this error message is the MPE file system’s
partitioning of the disk space known as "extents”.

Extents are portions of the file which reside on contiguous sectors of the disk drive. The en-
tire file does not have to fit into a single area on the disk. The entire file does not even have
to fit on a single disk drive. Files (and parts of files) are dynamically assigned disk space by
MPE when they are created. There are two philosophies of disk space allocation. One is ex~
emplified by IBM DOS. DOS allocates the ent.ire disk file un a single drive and on contiguous
sectors of the drive. If there isn’t a single free area big enough to hold the entire file, then
the operation fails. The second method, exemplified by the UNIX operating system and any
number of micro operating systems, is to only allocate file space when it is actually needed,
one sector at 2 time. With this method, all free spaces are identical size sectors. A file opera-
tion will not fail until there is absolutely no more free space left on the disk drive.

The advantage of the first method is performance. Once a file is located in the disk direc-
tory, there is very little head movement since the entire file is stored in one place. The dis-
advantage is that disk space fragmentation will eventually produce smaller and smaller free
spaces until there is effectively no more disk free space. (actually there are no more free
disk spaces big enough)

The advantage of the second method is that there is never a problem allocating disk space
until it is all gone. The disadvantage is in the overhead of keeping track of all of the little
pieces of the file. Directory entries take up a significant portion of the file’s disk space. Also
performance suffers because of the additional head movement from one part of the file to
another.

MPE uses extents as a compromise between the two methods. Extents are the individual
pieces of a disk file. Each extent of a file is allocated on contiguous sectors of disk, but the
extents themselves are not stored on contiguous sectors. MPE limits the number of extents to
32. This limits the amount of directory overhead required to store the pointers to each por-
tion of the file. When necessary however, the number of extents can be forced to one, caus~
ing MPE to store the entire file on contiguous sectors of disk. The MPE memory manage-
ment system requires program files to be stored this way, for fast access during segment
swapping.

The default for the MPE FOPEN system intrinsic (and the :BUILD and :FILE system com-
mands) is eight extents. Extents are allocated only when actually needed. When allocating
disk space for a file with eight extents, MPE will need one eighth of the total file size for
each extent. Since each extent is stored on contiguous sectors of disk, if there is not a single
area large enough to store it, the operation fails with a File System error 46, out of disk
space. The same disk file created with sixteen or thirty-two extents would require cor-
respondingly smaller and smaller contiguous disk spaces for each extent.

Since the HP3000 is a multi-user, multi-tasking computer system, it is likely that more than
one person or program is running at any given moment. Each of these users is accessing disk
files, either explicitly or implicitly via the memory manager swapping segments around.
With these considerations, it is unlikely that having a fewer number of extents actually
improves performance since other users are contending for the same disk heads. Therefore

Never Take the Default

increasing the number of extents will not significan.jy degrade performance and will lessen
the likelihood of an "Qut of disk space" error, by reducing the extent size.

* * *

One frequent cause of system hangs and system failures is SPOOLer shutdowns. MPE uses
the same file system for users’ files and for SPOOLed files destined for the line printer.
Hence MPE has the same problems creating files. If there is not enough free disk space to al-
locate another extent of a spool file, then the system can slowly grind to a halt. MPE creates
all SPOOLed files alike, regardless of the parameters in the FOPEN call. The SPOOL file size
and extent size are fixed at system initialization, either when booting, or performing a
:SYSDUMP. Unfortunately, if a given system is used to run extremely long reports (in the
thousands of pages), then SPOOL file size must be set accordingly high. But if only short
reports are run, or program listings and the like, then SPOOL file extents can be set relative-
ly small. Remember, every job, every running report, and every open list file to the line
printer, are creating SPOOL files whose extents may be far larger than necessary. If the
large free areas of disk space seem to be swallowed up very quickly after system initializa-
tion, look to reducing the SPOOL file extent size to save some disk space.

* * %

The second most recognizable system resource on most HP3000 systems is main memory.
More main memory is one of those oft heard cure-alls for whatever ails a system. Sometimes
this is true enough. But it doesn’t mean that more memory need be purchased. Again,
buying more memory can be considered the default solution. By judicious allocation of
memory in programs as they are written, memory space (as well as MPE’s memory manage-
ment performance) can be improved. All HP3000 computer systems have a limited amount
of memory (although some are more limited than others). The MPE operating system com-
pensates for this hardware limitation, to an extent, with Virtual Memory (VM) for program
read-only code. VM is the process of placing data not currently being used into secondary
storage (usually disk) so that some other data can be moved into main memory. The MPE
memory manager works very well, and insight into how it woiks can improve program and
system performance even further.

When a program references data which is not currently in main memory (either a program
code segment, or an extra data segment), MPE’s memory manager is invoked to retrieve the
data form disk. The first task is to make room in main memory for the data segment being
fetched. There are two distinct types of data segments. Read-only, program code segments,
and read-write data segments (including process stacks, extra data segments, file system buf-
fers and disk cache buffers). Nearly every time a segment is fetched, it must take the place
of some other segment(s).

MPE will always attempt to overlay program code segments first. There is no need to write a
code segment to disk because it is read-only. There is already a copy on disk. If enough
space can be found in main memory for the new segment, then it is loaded from disk.

If there is not enough main memory space available bv overlaying program code segments,
then read-write data segments must be written to disk. This effectively doubles the memory

Never Take the Default

manager overhead. First, the old data segment(s) must be copied nut to disk. Second, the new
segment is loaded into memory.

There are several ways to take advantage of the MPE swapping method. By Keeping seg-
ments small, fewer loaded segments are overlaid or swapped out. With MPE-V, disk caching
uses all of the main memory not otherwise allocated to data segments. Since these are read-
write segments, they must be posted to their respective disk drives before being overlaid.

Keep isolated code modules in isolated segments. If the program initialization code is in the
main segment, then it must be loaded into memory every time the segment gets swapped.
Such code should reside in its own segment. Once it executes and is swapped out, it will
never be swapped in again, relieving the memory manager of the additional work.

* & &

Every open file used by a program is allocated file system buffers by MPE. These buffers are
large enough areas in main memory to hold one block of records. There are two ways to
eliminate excess buffers when they are really not needed. The first is the most obvious.
Close disk and tape files when they are no longer accessed. All too often, programmers get
lazy and assume that MPE will clean up after a program finishes. This is usually true, but
these files are using system resources in the interim.

The second method is to use NOBUF file access whenever possible. When accessing a file in
NOBUF mode, the file system does not allocate any file buffers, rather the data is transferred
directly from the process’s stack to the file. A side effect of NOBUF files is decreased file sys-
tem overhead. For files with a blocking factor of 1, there is absolutely no difference in
program coding to access the files by blocks rather than by records.

System Performance

The HP3000 computer system, and the MPE operating system in particular, were designed
for general purpose business data processing. The IMAGE/3000 data base management sys-
tem, DEL/3000 and V/3000 were all developed to support business transactions. Data
entry, online inquiries, and batch processing are not considered to be "real time" operations.
And MPE is not considered to be a "real time" operating system. There is no "real" require-
ment to have a transaction completed in a given time, other than the inherent efficiency of
being able to do more work in less time.

In the HP3000 world, system performance is often measured in response time, the time the
system takes to process an average user request. There are various ways estimating how long
a transaction will take, but in a multi-tasking environment such estimates are often less
than accurate. Instead a stopwatch is used, or better yet, the system itself can measure the
program’s execution time. These measurements take two forms, actual time (wall clock time),
and processor time (CPU time). The bottom line is wall clock time, but the two are closely
related.

Over the years, the HP3000 computer system has grown from a few users with very small
programs, to hundreds of users with extremely large applications. Often, these applications

Never Take the Default

have out grown the original computer systems purchased to support them in one of two ways.
First, as more and more terminals are added to the system, the average response time drops
accordingly. Eventually the response time drops below some arbitrary intolerable point, and
the system has become too slow. Second, rather than adding more terminals to the system,
more functionality is added to the application, causing it to take longer to execute. The
result is the same. Eventually the system becomes too slow.

There are three solutions. Fuist, do not add any users or any new features to the system.
This is usually out of the question. The second, and perhaps too frequent solution is to pur~
chase a bigger, faster HP3000 from Hewlett-Packard. This could be considered the default
solution because it will always work (that is if HP manufactures a bigger, faster HP3000).
The third solution is to improve the performance of the existing svstem 4nd application
programs.

In all fairness to the second solution mentioned above, it is very possible that simply buying a
faster machine is more cost effective. Programmer’s salaries, and program maintenance costs
in general are the single biggest cost items in some DP shop’s budgets. For a large, stable sys-
tem, introducing changes can cause more harm than good.

But there is always the ~ext programming project and the next system. The remainder of
this article deals with improving system performance by improving application program
performance.

Modern day digital computers, including the HP3000, are very fast. They can execute
hundreds of thousands, or even millions of operations each second. To the unenlightened, the
delay of tens of seconds seems outrageous. What could the computer be doing with all of
those millions and millions of instructions? The answer, of course, is "overhead". Time shar-
ing, system intrinsics, COBOL, error checking, formatting, disk accesses, etc.. Most of these
are out of the control of the applications program, but some of them can be considered in the
design of new programs.

The single most obvious contributor to a program’s performance (good or bad} is its algo-
rithm. Given any operation to be done, there will always be more than one way in which to
to it. Considering the alternative methods, rather than just choosing the first method which
comes to mind, can make a major difference.

Consider sorting a set of data. There may be no other specific concept in computer
programming which gets more attention in programming texts. Yet all too often, a simple
bubble sort is used because other methods are unknown, or are too ambitious for the ordinary
staff programmer. The bubble sort could be considered the default sorting technique. There
are dozens of different algorithms, from selection sorts to quicksorts. Depending on the ap-
plication, one of them could be orders of magnitude more efficient than another.

The same can be said for any operation, not just sorting. The solution to performance

problems need not be to simply buy a faster processor. An Ap;..c II programmed efficiently
can run rings around a Cray-XMP programmed by a neophyte.

Never Take the Default

LR N

When Hewlett-Packard introduces a new high end HP3000, it usually includes a much faster
processor, perhaps twice as fast as the previous high end processor. Yet when an application
is moved to the newer and faster processor, CPU time drops, but the wall clock time remains
unchanged. The reason is disk overhead. The CPU may twice as fast, but the secondary
storage systems are not. In a typical business transaction, many many disk accesses may be
required. The processor can handle the data twice as fast, but must wait just as long for disk
accesses. The "hurry up and wait"” situation is exaggerated even further.

Disk overhead delays are inherent in the mechanical nature of disk drives. The data is stored
on rotating magnetic media which passes beneath a set of movable heads. The heads move
back and forth across the surface of the disks from the outside edge toward the center of the
disks. Each actual head position is known as a track. Modern systems have hundreds of
tracks on each disk surface. The disk heads take a finite amount of time to step from track
to track. This is known as seek time. A typical seek time for today’s disk drives is about five
thousandths of a second per track. In addition to the seek time, once the heads are positioned
on the desired track, the computer must wait for the requested sector to pass under the
heads. This delay is known as latency. Together, these two different delays make up the
disk’s access time. Once the requested disk sector is passing under the heads, the data transfer
takes place in about three ten-thousandths of a second. No matter how fast the computer is,
if it’s waiting for the disks, then it’s waiting for the disks.

With the delivery of MPE-V/P & /E, HP has incorporated system wide global disk caching.
Disk caching has been in use for years to increase disk I/O performance. Even the little
"E-disks” (E for electronic) used with the HP desktop computers are a form of disk caching.
While the MPE implementation does not help when writing to a disk file, it is safe to say
that disk data files are read much more often than they are written to.

For applications which use IMAGE/3000, there is little to be said or done about reducing
the number disk accesses. Most users could not modify IMAGE/3000 even if they wanted
to, and the rest probably would not want to even if they could. But all is not lost.
"Ordinary" disk data files, scratch files and tape files are used every day. These files and
their access modes are under control of the application program, and their use can be made
more efficient.

As mentioned earlier, a disk file’s blocking factor can affect performance as well as storage
efficiency. MPE always transfers data to and from secondary storage in blocks. If every
block contains more records, then fewer block transfers would be required. Remember that
the wait for disk time is disk access time, not data transfer time. Transferring a large block
takes (effectively) no more time than transferring 2 smaller block. By doubling the blocking
factor, only half as many disk accesses will be required. Likewise by increasing the blocking
factor by ten times, only one tenth as many disk accesses will be required.

There are two negative effects of large blocking factors. First, the MPE file system must al-

locate buffers in main memory for each file opened. If the file blocks are large then the file
buffers will be large as well. This could cause memory management problems in extreme

Never Take the Default

cases. Second, for randomly accessed files, the extra records in the block are not used, and are
therefore just wasting main memory.

There are ways to improve performance using random access files as well. As shown above,
increasing the blocking factor will not help reduce the number of random accesses to a disk
file. However, increasing the number of buffers can. When MPE opens a disk file, it allo-
cates main memory buffers to temporarily store the data between the disk and the user
program. Each buffer is large enough to store one block from the disk file. The number of
buffers allocated by MPE can be set by specified by using the number of buffers parameter
in the FOPEN intrinsic call (and also by specifying the ;BUF= parameter in the :FILE system
command). The default number of buffers allocated by MPE is two, which allows MPE to
"double buffer" sequential disk accesses. Allocating more buffers for random access files in-
creases the possibility that the requested block will already be in main memory. This is espe-
cially true if the same records in the file are being accessed over and over again. Depending
on the record size and the blocking factor of the file, up to sixteen buffers can be allocated.

Increasing the number of buffers for a file is still effective under the new MPE~V operating
systems with disk caching. Disk caching is precisely the same concept as multiple memory
buffers, but on a system wide basis. By locally maintaining file buffers, the system may not
have to go looking through the thousands of system buffers.

Another method of increasing the performance of programs which randpomly access disk files,
is to open the same file more than once. This is particularly useful when part of the file isa
header, or directory to the remaining parts of the file. Many of the files used by MPE are
of this nature. Program files, SL, RL and USL files, DSG graph and figure files to name a
few, all contain directories to the data stored in the file.

L& X 4

In nearly every discussion of program performance, program segmentation is mentioned. The
HP3000 hardware addressing limitation forces programmers to divide large programs into
enough pieces such that the individual pieces can fit into memory. These pieces are called
segments.

As a program branches from segment to segment, additional system overhead is incurred,
especially if the new segment is not in main memory. In this case, MPE Memory Manager
activity is required, including a disk access. Memory manager disk accesses are unlike ordi-
nary disk accesses in that they fetch entire program segments, up to 32 Kbytes at a time.

If the new segment is already in memory, then memory manager action is not required, but
there is still additional overhead in inter-segment transfers. Eliminating inter-segment
transfers requires placing all program modules in the same segment. This is impossible for
large programs.

There are several segmentation strategies advocated, and most, or all of them are valid for
various conditions. One of the more amusing approaches to segmentation is usually taken by
programmers unaware of what segmentation is. It usually involves placing the first N
modules into segment I, the next N modules into segment 2, etc.. As programs get larger,

Never Take the Default

and the programmers become more experienced with MPE, this method usually disappears
rapidly.

There is one element of program segmentation overlooked by most discussions of segmenta-
tion strategy. Program externals (intrinsics, image, I/O libraries etc.) necessarily reside in ex-
ternal segments. Every time one of these is called, an inter-segment transfer is required.

Some programmers go through great pains to reduce the number of inter-segment transfers,
either by re-segmenting their programs, or by modifying the program’s algorithm. But only
transfers between segments of the program. Transfers to system segments doesn’t seem to
count. Granted, calls to intrinsics and image libraries usually can’t be avoided. But a sig-
nificant number of calls to system formatting routines could be avoided if the equivalent
routines were coded directly into the program. This again raises the question of which is
more important: Development time or execution efficiency?

2k

One of the great mystiques surrounding the HP3000 is the use of privileged mode program-
ming (PM). Referring to the MPE manuals, warnings against the use of PM appear almost
everywhere. HP warns that the user’s program, the operating system, even the boot copy of
MPE on the system disk could be destroyed. True enough, but it would take a conscious ef-
fort to destroy anything other than the program’s own data, even with PM.

Once the HP inspired fear diminishes, it becomes clear that there are numerous advantages to
PM programs. PM allows a program to create and access privileged files, including
IMAGE/3000 files. Nearly all of the IMAGE database tools (SUPERTOOL, ADAGER etc.)
are privileged programs. By bypassing the IMAGE overhead these programs are able to func-
tion far faster than an equivalent program forced to use the IMAGE library.

IMAGE data base files are privileged because of the intricate inter-relationships of the
various files and pointers in the files. If they were not stored as privileged files, there would
be a tendency for users to access them without the IMAGE library. They could be copied,
stored and restored individually, rather than as a set. As privileged fileg, there is no danger
of any of these occurring. Privileged files may be created by anyone who would restrict ac-
cess to a file (or set of files) to use of specific utilities.

* 22

Another privileged function, which will almost surely not bring the world to an end, is
NO-WAIT I/O. In many applications, once some data has been written to an output file, it
would be more efficient for the program to go on to the next operation, rather than wait for
an I/0 operation. A PM program can do just that. For serial types of applications, overlaid
1/0 and CPU operations can significantly reduce the wall clock time taken by a program.

Another use of NO-WAIT I/0 is to control multiple terminals concurrently. Ordinarily, when
a read is executed to a terminal, the process waits until the read completes. Using NO-WAIT,
reads may be requested to many terminals at once. When data is received from one of them,
the process executes the required function, displays the results and executes another NO-WALT

Never Take the Default

read. If another read from another terminal completes, the process performs another
function.

Using this method, only one process is executing, rather than many identical processes. When
accessing IMAGE data bases, concurrent access is not required. Sophisticated locking
methods (and their associated overhead) are not required.

* &k

One final advantage of PM code. When using extra data segments for temporary storage,
using PM code to move the data back and forth is much faster than using the DMOVIN and
DMOVOUT intrinsics. The purpose of using an extra data segment in the first place is for
faster access than an external data file. Rather than calling an intrinsic (which checks to see
if you have DS capability every time, checks for bounds violations, and then transfers the
data), a simple EXCHANGEDB and move instruction are all that is necessary.

Most system managers, for many diverse reasons, avoid PM like the plague. To be sure, there
are some malicious people who would forsake all else for the ability to go wandering through
the system, doing as they please. But there aren’t many of them. Most programmers are
relatively professional about their work, and see MPE’s privileged mode as a way to write
more efficient and/or effective applications.

* &k *

There is more than one way to skin a cat. Similarly, there is more than one way to imple-
ment a program on the HP3000 computer system. For many “ordinary" or “one~shot"
programs, taking the shortcuts provided by MPE defaults is justifiable.

For more sophisticated, production programs, the easy way out may not be prudent in the
long run. The prevailing software design methods suggest a very large percentage of
development time be spent on the design of the software. This design should not necessarily
be constrained to the MPE default way of doing things, merely because it is the default.

Whether it’s allocating a scratch file, setting up an IMAGE database, or designing an entire
system; knowing the various options involved at each step and choosing the best one, rather
than simply using the default, can make the difference between an ordinary product and a
superior product.

* &

[i] It has been pointed out that it may be impossible to purge the user "MANAGER . SYS" since
MPE may trap that particular name. If true on a specific release/version/patch, using
DEBUG, the actual directory entries may be patched. Consult your HP SE for more
information.

[ii] The dichotomy between system security and user friendliness was well illustrated by
Steve Johnson in Do You Want to Play a Game?, an article originally published in the
Stack (the Baltimore / Washington HP Users’ Group Newsletter) and later reprinted in

Never Take the Default

the SuperGroup Magazine. Steve also described several methods for system managers to
reduce the risk of break-ins, specifically referring to modifications to the system catalog
file CATALOG.PUB.SYS.

Never Take the Default

Computer
. ‘Museum

‘1867 ‘2T AWW '3InL
‘1867 'Z1 AWM 3nL
£86T ‘2T AWW ‘30l

‘1867 °
‘1867 'ZT AVW ‘30L «
1361 ° MYVW "SAS YIOUNYW ‘LEEYSH «

‘SAS YIDVNVW 'LEEYSW « STLZTO#

Wd 8T:8 '[88T 'ZI AVW '3NL « NYVW :SAS MIDYNVW ‘[EEPSW » STLZTOF :8E98.SH
Wd BT:8 '186T 'ZT AVW '3NL » DMYVW :SAS UIDVNVW 'LEEYSW » STLZIOH :8€98.S#
Wd 6T:6 L86T ‘ZT AVA '3NL « MYVW 'SAS YIDVNVW 'LEEPSW » STLZTO# ‘'8E£98.S#

ZT AVW '3NL x MYVW 'SAS YIDVNVW 'LEEYSW » STLZTO¥ :8E98.S#
NYVW SAS YIDVNVW 'LECFPSN ~ STLZIOR :8£98.S#
ZT AVW "3NL « STLZTO# '8E98.S%

» MUVW SAS YIDUNVW 'LEEYSW » GSTLZTO# :8E98.S#
* NUVW :SAS HIOVNVW 'LEEYSW « SI/ZZ2TI0% :8E98.S#
» NIVW 'SAS ¥3IDVYNVR ‘LEEYSWH « STLZT0% uamcm S*

18E98.S#

Wd 8T:6 (1887 ‘2T AVW ‘3Nl «» MiVW !
Wd 8T:8 ‘86T ‘ZT AVW '3NL « MYVW :SAS YIDVNVW 'LEEYSW « STLZIO# :8EQR.S#

Wd 8T7:8 ‘L8867

‘ZT AV "30NL x NHVW ‘SAS YIDVNVW ‘LEEVYSHW

v« GTLZTO# '8E98.S#

‘21 AWW 'INL .
‘ZT AVW ‘300 ¥
ZT AVW ‘INL

NYVW 'SAS UIDYNVW 'LEEVSW «
NUYW SAS HIDYNYW 'LEEYSH «
NUVW :SAS YIDYNVW "LEEPSH «

(1881 'ZT AWW ‘3nL
‘86T 'ZT AVW '30L
‘186T 'ZT AVW ‘3Nl «

9T.2708% '6£88.S8
9142108 :6£98.5%
9TLztO8 '6E€98.S8

MUVW 'SAS YIDUNVW 'LEEPSW «
HUYW SAS YIDUNYW 'LEEHSH »
NUVIW SAS H¥IOUNVW ‘LEEYSH «

9TLZTO# :6E£08.S#
9112108 :6£98.SH
9T.2TO% '6£98.S#

9T.ZTO% :6£98.S%
9TL2T0% :BE9Q.S#
9TL2TO# -6£98.S#

‘2T AWW '3NL «
"TT AWW (301«
ZT AWM 300 .

NYVW 'SAS UIDVNVW LEEHSHW «
MYV SAS YIDUNVW | LEECYSW
NYYW 'SAS YIDVNVW 'LEEYSH «

Wd 6T:6 1861 'ZT AVN 'INL « NUVW !SAS YIDVNYW 'LECUSH «
W 8T:6 'LB6T 'ZT AVA ‘3NL » UYMW !SAS YIDVNYN LEEPSW «
Wd 6T:6 'L86T ‘ZT AVN ‘3Nl « VW !SAS HIDVNVW ‘LEEVSW «

9722708 '6£98.S8
91/Z10# :6£98.5%
9TL2TO4 ‘6£98.5#

Programming the New Generation
of Hewiett-Packard Digital Computers...

A R.L.S.C. Tutorial

Second Edition

by Jeff Hecker

Apogee
4632 W. Frankfort Drive
Rockville, MD 20853

Preface to the Second FEdition

This paper began in 1985, when non-ignorable rumors concerning Hewlett-Packards new
“Spectrum” series of computers began in earnest. At the time, being from a hardware
background, I was asked by some, what all of the fuss was about In February 1986, after
HP's formal announcement of the HP3000 series 900 computers, the first edition of this
paper was written and submitted to the 1986 INTEREX conference. During the intervening
time, much has been learned about the new systems. Between the time this paper is written
and the time it is read, it is likely that HP will have shipped series 900 HP3000s. With this in
mind, much of the speculation of the first edition has been deleted, since it won't be specula-
tion at the conference.

A R.IS.C. Tutorial

Programming the new Generation
of Hewlett~Packard Digital Computers...
A R.L.S.C. Tutorlal

by Jeff Hecker
Apogee

After all of the gossip, rumors, guesses and second guesses, Hewlett-Packard has announced
the first products to come from the Spectrum project. Despite all of the claims of com-
patibility, many people remain unconvinced. How can a completely new machine really be
compatible? How can a completely new machine with a completely new instruction set be
able to execute old programs? How can programmers take advantage of the new instruction
set for highest possible performance?

The new HP computers follow a recent trend in the computer industry towards what are
known as Reduced Instruction Set Computers (RISC). RISC computers in one sense, might be
considered to be a throwback to the very first days of programmable computers. Then, there
were only a very ‘. w instructions such as load, store, add and compliment. Not even a sub-
tract instruction! To subtract two numbers, the programmer would fetch the first operand,;
then fetch the second operand; compliment the second operand; add it to the first operand,;
and finally store the result back into memory.

In this case, a simple operation took twice as many instructions as it would first seem to
require. Also these were the days of machine level and later, symbolic assembler program-
ming. There was no such thing as a FORTRAN or COBOL compiler. It became clear to
computer designers that it would be much more efficient if the computer could perform
more complex operations. This way, the number of instructions coded by the programmer
could be reduced. Fewer instructions to be coded translates directly to lower costs and to
higher software reliability. (Sound familiar?) The current generation of Complex Instruction
Set Computers (CISC) was born.

These were the days of slow, expensive memory. Anything that could reduce the size and/or
the speed requirements of the memory system was implemented. CPUs were expensive, but
there was only one CPU. There were thousands, or tens of thousands of memory circuits. As
instructions became more sophisticated, fewer and fewer were required, reducing memory
costs dramatically.

Over the years, instruction sets continued to expand. Not only could computers subtract, but
they could multiply and divide too. Sophisticated operations such as memory to memory
copy, floating point math, iterative loop instructions, and even memory block checksum cal-
culations were incorporated into the computer’s instruction set. When microprocessors were
introduced in the early 1970%, one measure of sophistication was the number of different in-
structions they could execute.

Over those same years though, software technology was improving as well as hardware
technology. FORTRAN followed by COBOL, PL/L Pascal, C, Ada and others have been

A RISC. Tutorial

developed to further improve the efficiency of the programming task. Programmers no
longer had to worry about which particular machi+c instruction was being used. In fact,
today’s programmers are so thoroughly insulated trom the actual computer which executes
their programs, that one actually thought that a FORTRAN formatted WRITE statement
was carried out by hardware.

High level languages have caused two sweeping changes .u the computer industry. First is
program portability. Since a programmer (and therefore his program) are no longer concern-
ed with the actual computer instructions, he can take his program to a completely different
computer with (in theory) no changes.

The second change was much more subtle. With the use of high level language compilers, a
very few people decidt which of the computer’s instructions actually are ever used. When a
cuinpiler is written for a particular computer’s instruction set, it must translate the language
source statements into the appropriate sequence of machine instructions which will ac-
complish the needed function. Once the compiler is written, only those instruction sequences
generated by the compiler will ever be executed.

Over the years, compiler writing has advanced as well. Compiler writers no longer just ar-
bitrarily chose instructions from the CPU’s instruction set. Execution speed is also being con-
sidered. The classic example is the case of the VAX loop instructions. They are expansions
on the standard "Decrement and branch on not zero" instructions found in many CPUs. But
they executed so slowly, that compiler writers issued more traditional sequences of simple in-
structions which executed faster. This instruction (and others like it on many different com-
puters) are the excess baggage that CISC computers must carry around with them when a
new processor is designed. Many of a CPU’s instructions may be rarely, if ever, executed.
This is particularly true when one group designs the hardware, and an independent group
develops the software and compilers.

This phenomenon has not gone unnoticed by the computer designers. Beginning in the late
1970s, several researchers began to independently measurs which instructions were actually
being executed by CISC machines. Their results were another variation of the 80-20 rule.
80 percent of the time, computers were executing the same 20 percent of their instructions.

At the same time, another phenomenon was beginning in the computer industry: the UNIX
operating system. UNIX and its native programming language "C", were appearing on more
and more computer systems every day. Since all of these UNIX systems came from one
source, they all used precisely the same C compilers. Suddenly there were hundreds of
machines executing the same 20% of their instructions 80% of the time.

These developments triggered two reactions from computer designers. One was the
C-machine. The C~machine was designed specifically to execute C programs. Its instruction
set was taken from those actual instructions generated by the UNIX C compiler.

Secondly, academic researchers considered the idea of eliminating the rarely used instructions

from the computer. Taking the results from their measurements, they determined which in-
structions were actually useful, and which were not. Many of the instructions which were

A RI1SC. Tutorial

relatively unused are also the same complex instructions which have been added over the
years. RISC machines were born.

RISC machines offered great potential benefits to computer circuit designers. Eliminating
some (or all) of the more complex instructions allowed circuit designers to build a faster sys-
tem for an equivalent cost. Fewer different instructions also require fewer different CPU
components. Fewer CPU components require fewer transistors to implement them. Fewer
transistors require less silicon per chip produced. Less silicon per chip results in a higher
yield. Fewer transistors also require less power. Lower power increases reliability. There is
almost no fundamental reason not to implement a RISC CPU.

Recently, several computer manufacturers have introduced RISC CPU based systems to the
market. The Bolt, Berenek & Newman (BBN) C-70 is a C-machine, designed specifically to
run the UNIX operating system. Pyramid’s 9X systems are VAX-class minis designed for the
general market. Several other RISC machines have also been announced and delivered.

In Hewlett-Packard’s case, simply implementing a new RISC based computer system would
have alienated a large potential customer base. Not only must the new generation of HP
RISC based systems have more power than the current HP 1000/3000/9000 systems, but
they must be compatible with these systems as well.

There are several different approaches to compatibility. The simplest is to require each ap-
plication program to be re-compiled on the new system. Another method is to actually in-
clude parts of the old machine in the new machine. The third approach is to emulate the old
machine with the new machine,

The first method is in common practice in the UNIX community. Compatibility is defined
at the source code level. It is not unusual to require the complete re-compilation of all
programs even when an OS. update is installed. This is particularly likely on some UNIX
look-alike systems such as Microsoft XENIX. Fortunately, UNIX provides many more
flexible and automatic program generation tools than any other operating system, making
complete re~compilation of any program very simple.

The second approach was used by Digital Equipment Corp. when their new 32-bit computer
system, the "VAX" was first developed in 1978. At the time, the PDP-~11 was widely instal-
led, and DEC had the same problem which HP has had to face. DEC’s solution was to include
a PDP-11 processor as part of the VAX processor. DEC customers could run their existing
PDP-11 programs on the VAX unchanged, until the programs were converted.

The approach chosen by HP is to emulate the HP3000 instructions in software. A program
will examine each HP3000 instruction, and branch to the appropriate subroutine for
execution.

Of the three possibilities, the first seems least expensive, fastest to implement, achieves the
highest performance, but requires the most effort by customers making a conversion. Also,
each customer must have the source code for each of their programs. This is not possible
when customers buy their software from companies such as HP. The software developer ‘is,

A RIS.C Tutorial

therefore, required to convert all of the software before the system can be delivered, yielding
a false economy.

Including an HP3000 processor in the new machines would be contrary to the entire RISC
philosophy. The cost of the additional circuitry, and additional power consumption would be
passed along in each unit, even after conversion to the new system. However, this method is
most reliable in the sense that there are no new wuiapilers or inte«preters which might not
function properly in every instance. This is why DEC chose this path.

An interpreter is HP’s compromise between the hardware integrity and having to convert the
entire HP applications software catalog. An interpreter can also execute a program for
which the source code has been lost, or a program which has been patched for a particular
configuration. The other side of the coin is the severe performance penalty of interpreted
operation.

How do instruction set emulators work? How can one machine execute another machine’s
instructions? Why is there a performance penalty, and how severe is it?

The new HP3000 models from the Spectrum project will be able to execute existing HP3000
programs in "compatibility mode". Since the new computer system uses a new instruction set,
the CPU itself will not be able to execute the instructions. A system utility will be invoked
transparently to the user in order to execute the program in HP3000 compatibility mode.
This utility is the emulator or interpreter.

The interpreter is a Spectrum native mode program which uses the HP3000 program as in~
put data. Consider the BASIC/3000 interpreter currently available. BASIC is an HP3000
"native mode” program which uses a BASIC program as input data for execution. The prin~
ciple is precisely the same. The HP3000 interpreter is 2 Spectrum native mode program
which will examine each HP3000 instruction to be executed, and then execute it.

Interpreters, by their very nature, incur a tremendous amount of overhead. But how much?
Consider the steps which must be carried out by any interpreter for each emulated HP3000
instruction:

1) Check that the instruction pointer does not point beyond the current code segment limits,
(In practice, by properly aligning and filling HP3000 segments into HPPA pages, this step
might be performed by hardware during the following step.)

2) Fetch the instruction to be emulated from memory.

3) Increment the program instruction pointer so that the next instruction can be fetched
from the correct memory location.

4) Determine which instruction this one is, either by look-up table (a 65000 item table); or

by examining the individual bit fields within the instruction word, which might take
several steps.

A RIS.C. Tutorial

$) Branch to the appropriate emulation subroutine to execute this instruction.

6) Execute whatever sequence of native instructions is required to achieve the same result as
the emulated instruction.

7) Branch to (1) to fetch the next instruction.

These are the very same operations which every HP3000 computer must use to execute a

program. When implemented in hardware (such as an HP3000 CPU or a Spectrum CPU)

several of these steps can occur simultaneously in different parts of the CPU. When emu-

lated in software by a single processor CPU, each of these operations must occur sequentially

one after another. A rule of thumb is that the interpreter overhead will cause an order of

magnitude performance difference.

Consider the HP3001 NOP (No OPeration) instruction Typically, a computer car exécute a

NOP as fast or faster than any other instruction. In the emulator example above, the

emulator will have to execute 6 native mode instructions to emulate a NOP. We’ll assume

that the emulated NOP (step 6) is skipped. This yields a best case expected performance of

about 1/6th of an equivalent native mode program.

Of more concern is the expected performance of real instructions, not NOPs. Most of the in-

structions in an HP3000 program are LOAD and STOR. These instructions typically

reference either the DB or Q registers. To emulate a rather complex LOAD Q+5J.X instruc-

tion, some relatively sophisticated code is required. Remember that the +5 is embedded in

the instruction word, not in a separate variable.

5.1) Extract the offset (+5) from the instruction into a scratch register.

5.2) Add the value of the Q register pointer to the offset in the scratch register.

$.3) Is this an indirect access (,I)? If not then branch to (5.6).

$.4) Check for a bounds violation. This actually involves two steps. Is the referenced loca-
tion greater than or equal to the TOS pointer register? Is the referenced location less
than or equal to the DL pointer register? If so, then trap to a bounds violation routine.

5.5) Fetch the data from the referenced memory location into the scratch register.

5.6) Is this an indexed access (;X)? If not, then branch to (5.8).

5.7) Add the value of the X register to the scratch register.

5.8) Check for a bounds violation.

5.9) Double the value of the scratch register because this is a word fetch, not a byte fetch.

5.10) Fetch the data pointed to by the scratch register into the scratch register.

A RIS.C. Tutorial

5.11) Check that adding 2 to the top-of -stack (TOS! wointer will not cause an HP3000 stack
overflow.

5.12) Add 2 to the TOS pointer register to make space for the LOADed data.
5.13) Store the data in the scratch register to the location pointed to by the TOS register.

5.14) Return to the main emulator loop.

This code sequence could be typical for emulating an HP3000 instruction. There are less
sophisticated instructions. For example the stack operations such as ADD, SUB, DUP and
DEL are not nearly as difficult to emulate as LOAD and STOR.

There are also more complex instructions which are executed frequently such as conditional
branches, MOVE, SCAN and PCAL. PCAL (Procedure CALL) is particularly difficult. It has
been stated several times that a program will be able to execute in compatibility mode and
native mode and be able to switch back and forth. It has also been stated that several MPE
intrinsics will not be rewritten in native mode unti‘ “uture releases of MPE-XL. When the
HP3000 emulator encounters a PCAL instruction. not only will it have to route through the
internal and external STTs, it must also determine if the called routine is in native mode or
not. If it is, it must actually call it, otherwise it must continue emulating the HP3000
instructions.

MOVE and SCAN must actually execute as a loop in the emulator. These instructions will incur
the usual loop overhead plus bounds violation checking during each loop iteration. In some
cases, an optimized emulation can test for bounds violations for the first and last locations
accessed, rather than once per memory access. The exception is the HP3000 SCAN WHILE and
MOVE WHILE instructions. The emulator has no way to determine how many locations will be
accessed, and has no alternative to checking for bounds violations on each access.

Overall, using a software emulation approach to compatibility provides the capability to ex-
ecute any HP3000 program on the Spectrum class machines. No re-compilation is necessary.
The interpretation penalty is partially compensated for by the increased processor speed of
the Spectrum machine.

The software emulation approach offers many other potential capabilities as well. The
HP3000 instruction set contains no particular magic which makes it simple or efficient to
emulate, Virtually any instruction set may be emulated in much the same fashion. The pos-
sibilities are numerous; An Intel 8086 emulator for MS-DOS programs; An IBM System/370
and/or XA emulator; or a DEC VAX emulator able to run the VMS operating system. All of
these have been alluded to by various people associated with HP’s Spectrum project.

The actual expected performance will depend on the ratio of compatibility mode code vs. na-
tive mode code. A typical HP3000 application is based on IMAGE data bases. Most of the
time spent in such a program is spent executing IMAGE system intrinsics. There are not
many instructions between calls to DBFIND, DBGET, and DBPUT. If the IMAGE intrinsics
have been rewritten in native mode, then a program which spends most of it’s time in
IMAGE code will execute nearly entirely in native mode. A good analogy would be a

A RIS.C. Tutorial

BASIC/3000 program which accesses an IMAGE data base. Using the BASIC compiler does
not affect execution time very much because most of the time is spent in the IMAGE
intrinsics.

Emulation or compatibility mode is only used until programs are converted into native mode.
This is the case for MPE-XL code, intrinsics, HP system and applications programs, and for
users’ programs. Once everything is converted into native mode, compatibility mode will be
obsolete.

The main argument against RISC computers has always been that they require many more
instructions to accomplish a given task. Without improved compiler technology, this is true.
Since each instruction gets less work done, more instructions are needed. Even though each
instruction executes faster, there could be many more instructions to execute. More instruc-
tions also occupy more main memory. The success of a RISC based CPU depends on it’s com-
pilers. Incompetent compilers will doom any RISC based system to failure.

The compiler should be able to generate an efficient sequence of instructions, rather than
just any old sequence. Often the compiler will make another pass (or passes) over the code in
order to eliminate redundant instructions and other inefficiencies. This process is known as
optimization. The current HP3000 compilers have no optimization pass, and in fact generate
pretty sloppy code. The goal of an optimizing compiler is to generate efficient code. For
now, "efficient"” can be defined as compact, fast, and of course correct.

No one has seen HP’s optimizing compilers yet, so there is no way to estimate how well they
do the job. Most compiler optimizations have been well known and understood for quite a
few years now. There’s no reason to believe that the HP compilers will not do a good job op-
timizing program code.

But how can a programmer get the maximum possible performance from HP’s new Spectrum
computers? As always, programming in assembly language yields the best possible code, based
on size and speed. The penalty for programming in assembly is severe. Programmer produc-
tivity is very low, and the chance of errors going un-detected is much higher than with a
modern language such as PASCAL. Still, there are a few things to consider when program-
ming in a high level language.

The HP3000 was based on a stack architecture with very few usable registers. HP’s
Spectrum computer systems are register based. Every time a variable is referenced, it must
be brought into a register before it can be operated upon. If a program uses a large number
of variables, they must be constantly moved back and forth from memory into CPU registers.
Re-using variables for more than one section of code will allow the compiler optimizer to
keep those variables in registers longer. Consider the following PASCAL examples:

A RIS.C. Tutorial

{ swap some arrays)
for i := LOW to HIGH begin
templ := a[i];
a[i] := b[i];
b[i] := templ;
temp2 := x[1];

x[4] := y[i);
y[i] := temp2;
end;

In this example, the compiler needs the variables I, LOW, HIGH, TEMP1, TEMP2, and point-
ers to the arrays A, B, X, and Y. These will require 9 registers. This is a trivial example, and
in fact all of these variables could be loaded into the registers of the Spectrum machines.
But it shouldn’t be too hard to imagine a more realistic case where the compiler is forced to
move variables in and out of registers too often. An optimizer can’t easily tell which vari-
ables are important and which are scratchable, so it must save them all. (In fact, depending
on the effort expended by HP, it is possible for the compilers to look far enough ahead in a
program to determine if a variable can be scratched, but it is a non-trivial procedure.)

Rewriting the same loop to use fewer different variables can reduce the register require-
ments of a program segment. Consider this rewrite of the previous loop:

{ swap some arrays)}
for i := LOW to HIGH begin
templ := a[i];

a[i] := bli];
b[i] := templ;
end;

for 1 := {OW to HIGH begin
templ := x[i]:

x[1] := y[i];
y[i] := templ;
end;

Now only I, LOW, HIGH, TEMPI, pointers for A and B are needed at one time. Thisisa
reduction from 9 registers to only 6. It is possible that in some situations, the duplicated loop
overhead is less than the register load/unload overhead. If a block of code requires more
registers than are available in the machine, then the compiler must swap the variables out to
memory when not in use. Although the HP Spectrum machines have thirty-two registers,
they are not all available for use within a program. Some are reserved for milli~code opera-
tions, some are reserved for the HP3000 emulator, some are reserved for procedure parame-
ter passing, and some are reserved for CPU overhead such as stack pointers and program
pointers.

Register allocation has never been a concern on HP3000 computers before because there

were no registers to allocate. Every local variable is just as accessible as every other variable.
In HP3000 promotional literature, this was touted as an advantage of the stack architecture.

A RIS.C. Tutorial

Each local variable could be accessed directly. But each variable access requires an indexed
memory operation (ie Q+5). Register to register access is much faster.

Another feature incorporated into the Spectrum architecture is pipelined instruction execu-
tion. It is possible to begin an instruction before the previous instruction has finished execut~
ing. This may not seem to make any difference (and it doesn’t when programming in a high
level language), but it must be considered when programming in assembly language, or when
writing language compilers.

Consider the actual operations of fetching an instruction from memory, decoding it, and ex~
ecuting it. These three steps require three sets of hardware.

T+0) Generate the memory address of the next instruction, and read the contents of memory
into a CPU register.

T+1) Decode the instruction by routing the appropriate bits into gating and latching circuits.

T+2) Those circuits which were activated now actually execute the instruction operation,
perhaps requiring access to main memory.

T+3) Main memory access for those instructions which require it. Otherwise begin a new
instruction.

In non-pipelined machines such as the HP3000, each step would execute sequentially to
process an instruction, and then repeat. In more recent CPU designs, including the HP
Spectrum computers, pipelining attempts to reduce or eliminates each component’s idle time.
In this example, each CPU stage is idle for 2 out of 3 time cycles. By beginning the next in-
struction before the current instruction has completed, this idle time is eliminated, and
throughput is increased. Consider the pipelined system in the figure below. The boxes
represent the work being done by each processor stage during a given time period. Time is
represented by T+n where n increases. The instructions are indicated by the memory loca-
tion they are fetched from; M+n where n increases.

A RISC. Tutorial

Non-Pipelined Pipelineda

CPU CPU
----- L et L R T A e T L L e
Time | Fetch | Decode | Execute | | Fetch | Decode | Execute
----- L L il A LT L TR P T T P
T+0 | M+0 | | I | M+0 | |
----- R L L LY P A T L LY L ey e R L LT L L e
T+1 |] M+0 } | | M+l | M+0 |
----- L L L T T e T LT I T it AL EE L PEER L P
T+2 | | | M+0 I 1 M+2 | M+l { M+0
----- L LR LT LR L L L L L B D et e L EL LT TS
T+3 | M+l | | | 1 M#3 | M+2 | Med
----- L e Y Y ikt LA L LT PEE R
T+4 | | M+l | | | M+d4 | M+3 | M+2
----- L b e et S R
T+5 | | | M+l | | Ms5 | M+4 | M+3
----- D L bt L L L R . T LT
T+6 | M+2 | |] | M+B | M+5) M+4
----- B D D R it S e A e
T+7 | | M+2 | | | M+7 | M+6 | M+S
----- Dt St e S B et Dtttk
T+8 | i | M+2 I | Me8 | M+7 | M+6
----- D R it TR Sttt et T E P PP
T+9 | M+3 | 1] 1 M+9 | M+8 | M+7
----- tummmcecdeccmrrcedeccraname} emcuccmedemcnecccfem e m——-

Of course pipelining is not quite as simple as this graph would imply, but it does give the
right idea. In the non-pipelined system, the entire CPU must wait for the completion of
each instruction. In the pipelined system, more of the CPU is kept busy more of the time.
The pipelined processor in this graph is not faster than the non-pipelined processor, but at
the end of a given period of time, it has executed more instructions. If each time period in
the graph were one microsecond, how would each processor be rated for speed? The non-
pipelined processor executes 1/3 MIPS (Million Instructions Per Second). Rating the
pipelined processor is much more difficult. There is no correct rating. Any of 1/3 MIPS, 1.0
MIPS, or "up to" 1.0 MIPS might be used. It will depend on the method chosen by the
manufacturer.

The real world is also a bit more complicated than pictured here. Also, this example of
pipelining shows no provision for interrupts. Where does the processor restart after the
interrupt? After the instruction which has most recently been fetched? Or after the in-
struction which has finished execution? What if some stages perform partial instruction
execution? Some pipeline implementations have 5 or 6 stages, not just the three shown here.
The additional stages are used for indexed memory accesses and for faster memory manage-
ment. In this example there is no mechanism for accessing main memory during the instruc-
tion execution phase. If the execution stage requires access to main memory, then the in-
struction fetch will be forced to wait.

A RISC. Tutorial

This is another advantage of the register based CPU. As the ratio of register to register
instructions increases, so does the pipeline efficiency. The more often the processor must
access memory, the more often the pipeline will be kept waiting.

All in all, time will tell how successful the new HP3000 high end computers will be. Many
of the new architectural features of the Spectrum processors are clearly included so that HP
need never again say it’s sorry (particularly the 32 bit plus 32 bit address capability). The
HP3000 64 Kbyte data address limit has not been winning many latter-day followers in the
light of competitive minicomputers.

Hewlett-Packard has not leap-frogged anybody with their new computer systems. But with
new high performance, pipelined processors, large memory capacity, optimizing compilers,
relational databases, true virtual memory (VM), symbolic debuggers, and HP3000 family
compatibility, HP is finally keeping up with the Jones’s.

There are two very good books available which describe the trials and tribulations of design-
ing a new computer system. They can provide a view of the world from the other side of the
fence. New computer systems don’t grow on trees. Designing, building and programming
them is a monumental task. One of the books is The Mythical Man Month (Fred Brooks).
Fred Brooks was the project manager of the IBM OS/360 project. The book describes some

Machine (Tracey Kidder) chronicles the group of engineers who designed the Data General
Eclipse computer systems. Both books are very good reading for a project manager, or for
someone who has had to put up with project managers. Both are commonly available at
public libraries and bookstores.

eight years. He has been responsible for moving, debugging and optimizing several applica-
tions from the HP3000 to other computers and operating systems, and back again. Prior to
working with the HP3000, Jeff was a digital hardware design engineer for a Maryland based
telecommunications company.

A RIS.C. Tutorial

(2T AVW ‘30l MUV (SAS HIDVYNVW ‘ZECYSW » 9T.ZTJO# 'BE9S.SH
‘2T AVW '3NL « MUV SAS MIOVNVW 'LEEYSW x 9TLZTO# 'B6E£98.S#
ZT AVW “3NL » MUVW ‘SAS UIDVYNVW ‘LEEPSW » STLZTO# '6£98.S#

W 02:6 2861 ‘2T AVW ‘3NL » MHUVW !SAS HIOVNVW 'LECYSW » OTZZTO# :6£98.S#
Wd 02:6 ‘86T 'ZI AVA '30L ~ MNNVW !SAS MIOUNVW 'LECYSW s OTLZTO# '6£98.5#
Wd 026 ‘36T 'ZI AVW '30L » M¥VW SAS ¥IOUNVW ‘LEEYSW ~ OTLZTO# :6£98.5#

: Y1867 'ZT AVW (3Nl w MYUVW :SAS UIOVNVW | LEEYSW « 9TLZTO# '6E£98.S#
Wd 0Z'6 1867 (2T AVA 301 x MNYVW 'SAS ¥3IOUNVW 'LEEYSW x 9TLZ2TO# :6£98.S#
: L86T “2T AVW "3NL » MNAVW 'SAS U3DUNVW "LEEPSW « 9TLZTO# '6E£98.S#

Wd 02:6 1867 ‘2T AVW '3NL « MUVW :SAS U3DVNVW 'LEEYSW x OTLZTON '6E98.S#
Wd 02:6 ‘1887 ‘2T AVW ‘3Nl » MNAVW SAS UIDVNVW ‘LEEVYSW » OTLZTON :6E98.S#
Wd 02:8 ‘1867 ‘2T AVW ‘3NL « DHUVW SAS U3OVNVW 'LEEPSW = 9OTL2T0# '6E9S.S#

ABSTRACT

When the Systems Tables Manuall
is not Enough: Bit Picking in
Application Data Files

Jeff Hecker

For many years Hewlett-Packard provided only enough HP 3000 software to allow users to write
and compile their own applications. This was (and is) the Fundamental Operating Software (FOS).
Along with FOS, customers could obtain the System Tables manual which descibed the memory and
disk file formats used by FOS.

In recent years, HP has ventured into the end user application software market, with products such
as manufacturing, accounting, communications, office automation, and graphics. But there is no
equivalent to the tables manual for these products. There are times when, for whatever reason, the
information in these files is needed in a way not provided by the HP product.

This article describes the general methods used to decode various files, and the results obtained in
one case study of HP figure Files. The material contained is on a relatively technical level, but may be
useful to those with only a casual interest in knowing how to look into these files.

A Mechanic's View of Turbo

Dennis Heidner
Boeing Aerospace Company

Abstract

HP released TurboIMAGE in 1986, and the general public has since
had the opportunity to read the product specifications and market-
ing 1literature. Finally we have another view, this time not from
the vehicle's designers but from the mechanic next door. This
paper reviews some of the practical guidelines that have been
developed for IMAGE/3000 applications and how they have changed
with TurboIMAGE. I present techniques that were used to dismantle
the database engine, see what makes it run and discover what clogs
it up.

Introduction

My co-workers (and family) described me as "a little boy waiting to
open up his Christmas presents". I felt a more appropriate de-
scription was a Car and Driver test driver waiting for the new
model vyear's cars to arrive. In any case, it had been several
years since the TurboIMAGE product had been "announced", and now I
had my chance to test drive it!

Visual Inspection

My visual inspection of the new engine revealed that, for all prac-
tical purposes, the appearance had not changed. That was pretty
important since I was concerned about how it would work with the
rest of my vehicle (application software). The ownerf's manual was
rewritten to reflect the new powerplant. However, a number of
small errors crept into the manual. (Some of those errors later
would prove to be fatal to some!) A new accessory called DBCONV
was provided. This accessory made the installation of the engine

quite easy. The controls for the engine were the same, with a few
new additions. For example, DBUTIL now included the following new
commands: [1]

Command Function

Enable x for AUTODEFER Automatically use DBCONTROL mode 1
AND allow multiuser access!

Enable x for ROLLBACK Turn on greatly-enhanced transaction
recovery

MOVE Move a specific dataset (use filename)

to a specific disc drive

SHOW x DEVICE Show on which devices the datasets are

The TurboIMAGE program DBRECOV had also been modified to support
the new recovery rollback options and support MPE user logging
enhancements.

A Closer Look

I had a pretty good idea what to expect even before the TurboIMAGE
specifications “leaked out". You see, HP had previously introduced
a version of IMAGE for the scientific HP9000 series 500 computer.
While HP was telling the world about their great new scientific
computer, they were also selling their concept of a factory net-
work. It was reasonable to assume that the same capabilities of
the 9000 would make it into the "top-of-the-line" HP business
computer!

I am sure that some of my local HP SE's thought that I had some in-
ternal spy network in order to get the changes before they were an-
nounced to the general public. Well, my secret is out. I read my
SSB's, Communicators and HP product announcements for similar
product lines.

In case you have missed them, the specs are: [2] [3]

IMAGE/3000 TurboIMAGE

Data items per database 255 1023

Data items per data entry 127 255

Data sets per database 99 199

Detail sets per master 16 16

Master sets per detail 16 16

Maximum entry size 4094 4094

Entries per data set 8,388,607 2,147,483,647
Entries per chain 65,535 2,147,483,647

(The 2,147,483,647 entry limit may never be reached on the current
hardware and version of MPE because of hard-coded file system
limitations).

out on the Test Track

Since I want to uphold my Car and Driver image, let me describe the
test track that I had set up and the performance I saw with the new
engine. Then I will cover the engine tear-down, what I found, my
likes and dislikes.

The equivalent of test tracks for computers are benchmarks. There
is a small problem though: benchmarks should be considered a four
letter word. No two benchmarks are alike, and seldom do they match
reality. Trying to use the results of a benchmark to predict per-
formance of a computer is similar to using the EPA estimate for gas
mileage for a new car: lots of luck! After considering my options,
I decided to stay with a benchmark that I had designed seven years
earlier to test transaction logging. This battery of tests is not
the greatest, but it is the only set of tests that I knew of which
had been used on every version of IMAGE since the early release of
IMAGE-B.

The test consisted of a stream job and several programs which would
make DBPUTS, DBDELETES, DBFINDS, DBGETS and DBBEGIN/DBEND transac-
tions on a small database. The stream job was written so the same
transactions were repeated with all TurboIMAGE database recovery
options and AUTODEFER. The same stream job (minus the test for
AUTODEFER and Rollback) was used on IMAGE-B.

The results were apparent in a matter of hours. You see, the test
would take about one hour when run with IMAGE-B, but when we ran
the same test on a TurboIMAGE installation, the test never com-
pleted. Not too bad for a faster engine! It turned out that the
problem was not a slower engine or some obscure bug but that Turbo
was working Jjust the way it should. My benchmark, which worked
fine for IMAGE-B, was dependent on a slow, serially-threaded IMAGE,

but with those restrictions removed, the portion of the benchmark
which said it was time to stop never reached its limit condition!

Okay, I know that's a bit confusing, so let me explain further.
The benchmark had a master process which would make the timing
measurements, while several son processes were trying to make
hundreds of DBUPDATEs against the database. The idea was to simu-
late a transaction-intensive environment. Logfile analysis showed
the problem was that IMAGE-B did not honor MPE priority scheduling.
Instead, the processes ended up in a round-robin-type of priority,
regardless of the CPU time each used. This was contrary to the MPE
scheduling philosophy, which is to penalize heavy resource users in
favour of short easy-to-handle transactions. With TurboIMAGE, the
cheating stopped. The result, on Turbeo, was that my main process,
which happened to consume a lot of CPU time and other critical
resources, was dropped in priority, while the "loading processes"
were always allowed to run because they required very little CPU

time. The main process was coded to determine when the test was
complete, but it was never completing because it had a low
priority. This may sound like there were no transactions being

made on the database, but the opposite was true. With IMAGE-B,
several thousand transactions would have bheen written to the log-
file. With TurboIMAGE, after allowing for the longer run time, the
nunber was in the tens of thousands! In the end, I modified the
benchmark in order to run the test on TurboIMAGE. The results are
shown in BAa-1, at first glance not very impressive. However the
test compare the best case of IMAGE/3000 against the worst case for
TurboIMAGE! (Remember IMAGE/3000 was serially threaded, in effect
tuned for a single user, while TurboIMAGE flies when there are con-
current users.) Chart A-2 is a comparison between DBPUTs with ILR
and logging (The TurboIMAGE logging test are with AUTODEFER).

Tools for Dismantling the Engine

Now that we've taken the change for a test drive, no mechanic could
resist the chance to kick a few tires and get out the old toolbox
to see how the new thing works.

Memory Dumps

Some of my more exciting nights were spent reading memory dumps. I
am sure my wife and Marguerite Russell thought that the strain of
it all had gotten to me - there was a grown man laughing and cheer-
ing at a bunch of octal numbers. I assure you, I really am quite
normal, but I could not restrain <the excitement generated when I
saw that HP had corrected, enhanced or implemented many of the
major complaints or wishes. The memory dumps were useful in

determining how TurboIMAGE was handling its extra data segments
(XDs's) . For instance, how is the database system control block
(DBS) used? It was through the reading of memory dumps that I came
to believe the purpose of the DBS had changed from what HP had
previously documented. [4] You see, they claimed that all access to
the database would be coordinated through the DBS. If that was
true, the DBS should always be present because of the frequency at
which it is accessed. What I had observed is that the DBS appeared
to be always absent. The memory dump was the first place I was
able to confirm the use and operation of the GLOBAL AFT. Finally,
with a 1little bit of luck, I was to duplicate some of the system
failures that were reportedly caused by TurboIMAGE. Then by match-
ing up the failure with the known problem report in the SSB or
patch summary, I obtained a better understanding of what was occur-
ing internally in TurboIMAGE.

I~-dump Files

Oone of the (hopefully) seldom-used features of IMAGE implemented in
all versions is a feature called the IMAGE INTERNAL INCONSISTENCY
ABORT. Whenever IMAGE or TurboIMAGE detects something that looks
strange, (besides my designs), it creates an optional snapshot file
and aborts the offending program. Generally, this abort only occ-
curs 1if a broken chain or damage to the database is encountered.
The function of the snapshot (I-file) is to aid the IMAGE lab at HP
locate and correct bugs. These I-files are also useful to a
mechanic trying to figure out how an engine works.

Unlike the memory dump, the I-file contains the user's stack and
all Turbo control blocks that the process needed. These are typi-
cally the stack, database global block (DBG), database buffer con-
trol block (DBB), database user local control block (DBU) and the
intrinsic level recovery control block (ILCB).

SOOT/ADPAN

One of the fancier toolsets in my mechanic's box is a pair of
programs called SOOT and ADPAN. SOOT is a program, written by Ben
Norton of Boeing Computer Services, which allows a user to capture
the program stack for any process. [5] ADPAN allows a user to
analyze this “captured stack" (dump file) and look at the stack
markers, files which were open, data values and program global
data. [6]

Using these tools, several interesting points were immediately

visible. The first was that HP has created a number of new inter-
nal procedures which implement TurboIMAGE's new buffer management
algorithms. (See A-3,4,5 & A-8,9.) The second was that FOPEN's

for individual datasets are no longer recorded in the process stack
(this may not be news now, but it was in 1986). (See A-6,7)
Finally, the meaning of the BASEID, the first word in the base pa-
rameter of a DBOPEN call, had changed. Previously, with IMAGE-B,
this word had two meanings. The upper six bits contained an acces-
sor count and the lower ten bits contained the DST number of the
DBCB. The increased table sizes allowed by MPE V forced this to
change. The problem was that in ten bits the largest number you
may have is 1024, but MPE V now supported 4096 XDSs. The HP
literature stated that the BASEID would be used as an index into
the DBS, which in turn pointed to a new index for the DBCB or DBG.
That does not seem like a very efficient process; in real 1life, HP
has done some fine tuning. The BASEID is now the DST number for
the DBU. The DBU, not the DBCB, has become the starting point for
all Turbo intrinsics!

Debug/Decomp

Debug and Decomp were tools of last resort. They are similar to a
mechanic's modifier and eliminator (also known by the generic terms
"hammer" and "blow torch"). The use of DEBUG/3000 was risky, since
I had to be running in privileged mode. It did allow me to single-
step my way through some sections I was perplexed by; in other
cases, I was able to single-step my way to unintentional system
failures! Decomp allowed me to view the only "source code" avail-
able, the run-time library. Several interesting observations were
made with the use of Decomp, including new states for the rootfile
(these were later explained by Doris Chen's rootfile paper([7]).
Decomp and Debug were the only real tools available when trying to
figure out how the new buffer management algorithms work.

Trace Files

HP responded to the frequent user requests for a database perfor-
mance monitoring tool by developing the database PROFILER. This
package must be bought (like OPT and APS). In theory, it will al-
low the Database Administrator to monitor the frequency of accesses
to various databases, how the databases are being accessed, how ef-
ficently the internal buffers are being used and whether or not the
database needs restructuring. When IMAGE-B was rewritten into
TurboIMAGE, many of the internal procedures were instrumented.
This means that special hooks were added to collect information
about how, when, where, and what called the procedure. This infor-
mation is collected in a XDS or written to a file. The PROFILER
"Turbo Data Analysis" routine is later used to replay the informa-
tion which was collected and generate the profiles for your
databases. While tinkering with the system, I discovered that it
was possible to turn on the collection mechanism without having the

profiling package installed. The resulting Turbo trace file was a
important in understanding how Turbo now works. (See A-8,9.)

What's Under the Hood

Rootfile Changes

Understanding the rootfile turned out to be a tedious task. Even
with my previous knowledge of the IMAGE-B rootfile, decompiling and
understanding the new regions consumed several weeks. In the end, I
was quite proud of myself., I had done it! Then, two weeks later,
I received my copy of the Madrid conference proceedings with Doris
Chen's article about the rootfile. Her paper included a copy of
the rootfile layout as an appendix! [8][9] (Oh well, so much for my
summer tan...)

Since I spent so much time figuring out how to decode the rootfile,
I might as well write one paragraph on how to do it. Here we go!
The first step is to choose a simple database, (I chose the SAMPLE
database from The IMAGE/3000 Handbook). Then you must compile it
with DBSCHEMA on an IMAGE-B system. You may dump the rootfile in
its entirety using DBDUMP. The next step is to create the database
using DBUTIL, then (you guessed it) dump the rootfile and as~
sociated sets using DBDUMP. After you have a view which shows the
locations of items/sets with IMAGE-B, you repeat the process for
TurboIMAGE.

Control blocks

The most significant enhancements made were the restructuring of
the database control blocks. With IMAGE-B, the two main players
were the DBCB and the ULCB. 1In effect, whenever an IMAGE intrinsic
was called, the user's program obtained exclusive control of the
DBCB, copied in user-specific information from the user's stack
then modified the DBCB (by copying in information from the ULCB).
The assembling of buffers and user logging information was perform-
ed 1in a trailer area at the end of the DBCB. The net effect was
that only one process could access the database at a time (the ac-
cess time was typically in thousandths of a second).

TurboIMAGE addresses this problem by splitting the DBCB into two
new control blocks, the database buffer (DBB) and the database
global (DBG) blocks. Most of the processing performed previously
on the DBCB was moved over to the ULCB, which was renamed the
database wuser (DBU) block. With TurboIMAGE, as much of the
preprocessing and assembling of information as possible is done in
the user-specific control block. This means that the DBG is only

required when the database 1is opened, a 1lock is acquired or
released (DBLOCK/DBUNLOCK) or global information is requested. The
DBB is now only needed when we are trying to move information from
the the physical media (disc drive) to our user-specific DBU. Even
then, TurboIMAGE has been enhanced so that it tries to eliminate as
much contention as possible. This was accomplished by allowing
TurboIMAGE to place a "hold" on single buffers, not the whole DBCB.

The function of the RDBCB and ILCB remain basically the same as
before. The function of the SDBCB (now the DBS) appears to have
changed. From what I was able to glean from the tear-down was that
the DBS is now used primarily to coordinate PROFILER operations.

Turbo also introduced several new control blocks. These are the
database extension (DBX) block, used to hold the overflow from the
DBG; the database trace (DBT) block, which appears to be used to
collect and coordinate Profiler activity on a database level; and
lastly, 1 saw references (via DECOMP) to another control block
which I will call the database mystery (DBM). As you may have
noticed, all the control blocks have three~character acronyms;
that's not necessarily HP's convention, but rather an author's
privilege I've taken. [10]

The dividing of the functions of the control blocks means that we
now have more area for locks, more and larger buffers and increased
numbers of items and sets. The flip side of the issue is that we
now will have more, larger DSTs. Larger, of course, means we will
consume more resources than before.

Locking

Recently, how to lock has been a rather controversial issue. There
appear to be as many "right ways" to 1lock as there are files in
PUB.SYS. One thing is sure though, the increased concurrency that
is now allowed with TurboIMAGE spells BIG trouble if you have a
weak (or nonexistent) locking plan. HP also has recognized this
and increased the region available for locks from 6k words to 8k
words. [11][12] 1If you wish to take advantage of the new recovery
tools available, or if you wish eventually to migrate to "ALLBASE"
then you must consider implementing the HP-suggested method of
strong 1locking. [13] Strong 1locking is intolerable if you use
database 1level 1locking (some third party vendors still do!).
However, there is really no need to resort to database locking, be-
cause HP has provided us with a predicate locking capability. By
using predicate 1locking, you may acquire locks on specific item
values, many different datasets (including masters) or the entire
database. The use of dummy datasets, extra databases and some of

the other gimmicks will probably cause you more pain than it will
actually be worth in the end.

Split databases

In years gone by, many installations encountered the old limita-
tions of 99 sets or 255 items. 1In order to accomodate the applica-
tions they had designed, the solution was simple: split the
database into two or more databases. A similar solution was often
used if an installation felt that it was being hurt by the single-
threading issue, Those constraints have now been removed, and
another interesting problem has replaced them. Those applications
which have split database may now consume much more resources than
they save (because of the extra DBU's). If you have such a ap-
plication you may want to try merging the databases back together.
Here's how:

1. Choose one database as the primary database

2. Use DBUNLOAD to unlocad the primary database

3. Add the data elements from the secondary bases to the
primary database. Be careful to add the secondary sets and
items to the end of the item lists and set lists.

4. Recompile and DBLOAD the primary database ’

5. Use DB2DISK from the CSL to unload the secondary
database set by set [14]

6. Use DISK2DB to load the information back into the
primary database [15)

7. Establish an account-wide (or system-wide) user defined
command which redirects programs from the old secondary
database to the new database

EXAMPLE:
DB
OPTION LOGON
FILE DB2=DBPRIME
FILE DB3=DBPRIME

FILE DB4=DBPRIME
hkkk

Buffer sizes

After you have determined the minimum number of buffers, you may
determine the optimal buffer size. The space available for buffers
is now equal to the maximum size XDS allowed (approximately 32K
words) . The DBB requires about 4000 words for overhead space,
leaving 28K words for buffers. The buffer space used by TurboIMAGE
is equal to the maximum blocksize allowed plus thirteen words of
overhead. That is:

28K words
buffer plus OH = ====-~cmc—cccecec-a-
buffer count

BLOCKMAX = buffer plus OH - 17 ; round up to even number

Block Factor

Great! Now we know what size buffer we want, but guess what? Just
specifying a large block size in the schema does not automatically
mean that TurboIMAGE will wuse it! Always check the summary
generated at the end of a DBSCHEMA compile. If the value of
BLOCKMAX minus the BLK LGTH is greater than MED REC, you are wast-
ing space. You may force the SCHEMA compiler +to use the extra
space by changing the blocking factor (BLK_FAC). For example:

Name: TEST-SET, Automatic
Entry: KEY-VALUE (1) ;
Capacity:311 (BLK _FAC);

WARNING: Choosing to enlarge the buffers in order to increase the
blocking factor, without first calculating the minimum
number of buffers is wrong! I have a friend who did not
calculate the minimum number of buffers but instead in-
creased the blocksize to 4K words. The result was sig-
nificantly slower performance. Choosing buffer size and
count using the o0ld IMAGE-B rules WILL HURT YOUR
PERFORMANCE,

TurboIMAGE and the File System

The improvements HP made did not stop with the restructuring of the
control blocks, buffer management algorithms or the obvious visual
changes. The interface between IMAGE and the file system has been
also tuned up. This is significant. A major enhancement made to
MPE V several years ago is called the GLOBAL AFT. Until
TurboIMAGE, very little use was made of GLOBAL AFTs. The purpose
is to allow a process to request that a file-open (FOPEN) be made
globally. once the file has been opened, any program can read or
write to the file without opening it.

Seems straight forward, right? Well it is, sort of... You see,
what can now occur is that a program which accesses the database
first can open up all the datasets, place them in a globally-opened
file 1ist, do its work then close the database. If another program
starts to access the database while the first one is running, the

10

datasets opened by the original program are left open. The second
program is responsible for closing the files! What's gained by all
of this? Lots! File open and close operations are some of the
most resource-consuming operations available on the HP3000. The
number that must be performed has now been significantly reduced.
A second, equally important, feature of global AFTs is that the
file open information is no longer stored in every program's stack
but in a special XDS reserved for it. This eliminates the file
system error 74 (INSUFFICIENT STACK SPACE) abort [16] which oc-
casionally occurred, leaving the database in a corrupted state!
The third use of the global AFT is that HP can now implement a
faster I/0 algorithm using NO-WAIT I/O.

Are there drawbacks? Yes. With IMAGE-B, a DBCLOSE mode 2 would
release the resources associated with the dataset, including clos-
ing the file. This no longer occurs! The most significant impact
is that if a modify program opens the database first, then several
read-only programs open the database, when the modify program ends,
the database will still have the files opened for read/write access
until the last program (read-only included) has closed the
database.

NOWAIT I/O

NOWAIT I/O is not a new feature of MPE, although it is new for HP
to use it with IMAGE! NOWAIT I/0 is a function of both the
hardware and the MPE operating system. Perhaps an analogy would
explain it Dbest. Let's presume that we have a Very Important
Person (VIP) who will arrive at the local airport and wants to
visit the mayor. The trip requires that we travel through a mini-
mum of 20 intersections., The standard WAIT I/O scheme would have
several escort cars block each intersection when the light changes,
then let the VIP through. Once the VIP is on the other side of the
intersection, he waits for the escort cars to get back in front of
him so they can block the next intersection. Although this method
has the least impact on the local community, it takes considerably
more time to travel the distance.

On the other hand, had the method been NOWAIT I/0, the path would
have been mapped out ahead of time, with several escort cars at
each 1intersection. Each escort driver knows the approximate time
the VIP will arrive at his intersection and automatically closes
off the intersection just prior to the VIP's arrival. The result:
the car carrying the VIP need never slow down. The NOWAIT I/0
scheme requires more resources (in the case of TurboIMAGE, CPU and
extra disc controllers).

11

The use of NOWAIT I/0 has another side benefit. Since the route is
planned ahead of time and takes less time to travel, there is less
time for a terrorist attack (system failure).

If AUTODEFER is not turned on, then TurboIMAGE will ensure that all
buffers have been posted before returning to the user. (A
read/write to cache is considered complete!) NOWAIT I/O is used
only for DBDELETE and DBPUT. These are two intrinsics where multi-
ple I/0's are routine. Once the last I/O has been requested,
TurboIMAGE then enters a loop where it will wait until the I/0O has
been completed (MPE will set a flag as each I/0 completes). When
the last I/0 is done, the DBB is released.

With AUTODEFER, the buffers are not automatically posted. Instead,
we retain the changed buffers in the DBB for as long as possible
with the hope that more changes can be made to the current set of
blocks before we need to start the I/O. When we need to write a
buffer, the I/0 is started; however, we do not need to wait to see
if it has completed. Instead, since we have global AFTs, we will
let the next process that requests a buffer perform that check. If
the I/0 is still pending, this other process must wait!

The non-AUTODEFER I/0O should still be as reliable as it was in
IMAGE-B; however, as you may have already guessed, AUTODEFER sounds
more complicated and risky. It can be especially hazardous to your
health if you do not use some form of transaction logging and rol-
lforward recovery. The performance gains, though, are phenomenal
and well worth considering! :

RECOVERY OPTIONS

The old standby recovery method, ROLLFORWARD, is still in
TurboIMAGE. What HP did was improve ILR and add the much-desired
ROLLBACK recovery. With ROLLBACK, you no 1longer purge the
database, mount the 1log tape and then reenact the transactions.
Instead, the log tape is mounted and scanned for "“recovery blocks".
Any incomplete transaction in the recovery block is "backed out".
The result is that you may be up and running in minutes instead of
hours or days! There is a major disadvantage, though. In order to
ensure that all the transaction log records make it to the logfile,
user logging wuses the serial write queue and does not buffer the
transactions in its internal memory buffer. This means that there
is at least one additional I/0 for every DBUPDATE, DBPUT, DBDELETE,
DBBEGIN or DBEND. Furthermore, ILR must also be enabled. The
TurboIMAGE manual contains a reasonably complete writeup about the
features; be sure to read it. In addition, Peter Kane of HP has
written a paper [17] which you should also read.

12

caution should be exercised with the new :CHANGELOG feature of MPE.
I have received a number of calls from users of a Contributed
Library program that I wrote, LOGLIST [18]. It appears that what
has happened at several sites is that rather than stopping the log-
ging cycle when backups were done, a :CHANGELOG command was used
instead. Then, after the backup was completed, the old logfile was
purged and transaction logging was resumed. Later, the users want-
ed to look at the logfile, and LOGLIST asked for a file that exist-
ed months ago, but had long since been purged. The moral of this
story: ¢CHANGELOG SHOULD NOT BE USED TO START/STOP A LOGGING
CYCLE! ¢CHANGELOG IS A TOOL TO BE USED WHILE THE LOGGING CYCLE 1S
IN PROGRESS. All those files are part of a "log set", which is
required to RECOVER or AUDIT the database! [19]

Fair weather database management with Turbo

When is safe safe enough? Next to designing the database, probably
the most difficult job for the database administrator is assuring
that the information contained therein is correct, logical and syn-
tactically correct (no broken chains). One method to meet the
desired goal is to use the full rollback option. This ensures
database structure integrity, while also providing the audit trail
required to locate and correct semantic errors. If your system is
already heavily loaded, this may be unacceptable. The other solu-
tion is to use AUTODEFER with rollforward recovery. This ensures
database integrity and provides an audit trail, while also provid-
ing a boost in performance. The drawback to this is that when a
system interruption (sustained power loss, system failure or dead
lock) occurs, a slow rollforward recovery must be performed. The
“fair weather database management" method says we will resort to
enabling rollback recovery at times when we are at a higher risk
(thunderstorms, the day after PMs, etc.) and switch to the
AUTODEFER/LOGGING option when the sun is out.

Mechanic's notes

One of the enhancements included in TurboIMAGE was a major change
in the way that ILR performs its duty. With the previous version
of ILR, there was an assurance of a minimum of three I/O's (more if
there were an insufficient number of internal buffers allocated).
Turbo's version of ILR has reduced this to two I/0's. This was ac-
complished by simplifying the method of marking a transaction in
progress. In the ideal case, the required buffers are modified and
moved over to the ILCB. A copy of the transaction logging informa-
tion to be sent to the user 1logging interface (via WRITELOG) is
placed in the ILCB. This log record is renamed to "Action log" and
is used to ensure that the transaction log and ILR file are in
sync, so that a rollback recovery can be made. A start timestamp

13

is added, then the whole ILCB is written out in one I/O (this
assumes best case). After the ILR file has been written, the
individual buffers are posted to the appropriate datasets. The
last step 1is to signal the transaction complete by writing a new
end timestamp in the trailer area of the ILR file.

If there is a system failure, the ending timestamp will be less
than the start timestamp. A crash is detected by DBOPEN. Special
"hooks" placed in DBOPEN allow it to bring the buffers back into
the DBB and post the buffers back to the datasets. The final ILR
step is to repeat the command as recorded in the "action log".

One of the interesting observations I made was that the ILR file
always appeared to be zeroed out when nobody was accessing the
database. Apparently DBCLOSE now cleans up the ILR file, which in
turn, makes the process of opening up the database easier.

Finally, here's one other tip. Each record in the ILR file is
large enough to hold just one buffer. TurboIMAGE apparently calcu-
lates the minimum number of records required to hold the worst case
DBPUT or DBDELETE. It then adds additional space so it can hold
some global information, the "action 1log" and the trailer (ending
timestamp is here). What all this means is we now have a simple
method to find out the minimum number of buffers that should be
specified to DBUTIL. Here's how:

1. Turn on ILR
2. :LISTF dbname00,2
3. use the number of records under "EOF" is approximately
equal to the minimum number of buffers you should have
4. Use DBUTIL to change buffspecs
¢RUN DBUTIL.PUB.SYS
>SET dbname BUFFSPECS=eof (1/yourchoice)
5. Optionally Turn off ILR

My wish list

Anytime a do-it-yourself mechanic gets around a new car, there are
a lots of OOOOHs and AAAHs. There are also a lot of "what ifs",
and "If I had made the car" or "If I had designed the widget!™
Well, I have a couple of pet peeves that I wish were fixed. The
first is the ability to update critical search items. This one
feature would actually increase the versatility of TurboIMAGE and
provide added performance benefits to most HP3000 users. The
second is a way to "break" database deadlocks without having to
resort to a system shutdown and restart. Ideally, this "break"
routine would let the Database Administrator (DBA) force the
deadlock free without shutting down the database several times.

14

One simple method would be to simply let the DBA use DBUTIL to mark
the DBG or DBB as being corrupted. This would, of course, require
that the deadlocked database be recovered, either with DBRECOV or
DBUNLOAD/DBLOAD. The advantage would be that only one database
would be involved and in a more controlled manner than a system
shutdown/restart. (Remember that, with a shutdown, you would have
had to recover anyway!) The third wish 1list item is additional
DBINFO calls. I would like to see HP do the same thing for the DBA
and TurboIMAGE as they did for the MPE command user. Every pilece
of information that is available from the DBUTIL SHOW command or
from the PROFILER hooks should be available through DBINFO calls,
Imagine the tools that could be written, DBOO (like SO0 but for
databases), monitoring tools that automatically warn you when you
need to tune the database, tools that recommend and correct im-
proper buffspecs, etc. Oh well, I always thought the Edsel was a
neat car....

FINI

What's the bottom 1line? Would I recommend that you "buy into®
TurboIMAGE? Yes! TurboIMAGE will have been in the field at least
two years by the time this paper has been published. Most of the
little bugs that invariably show up with new products should be
fixed. The new features are very worth asking for. 1It's true that
TurboIMAGE can be a resource hog. However, if you're willing to
play by the new rules that TurboIMAGE brings with it, most, if not
all, of the performance problems can be minimized or eliminated.

The old rules of thumb for IMAGE/3000 are not necessarily the cor-
rect rules of thumb for TurboIMAGE. Unfortunately, the old rules
of thumb were the result of many man-years of experience by the es-
tablished HP3000 community. It may be several more years before
the new rules of thumb for TurboIMAGE are well known. You can
help! Let's see some papers written about how well PROFILER/3000
works and compares to the standard CSL tools like DBLOADNG and
DBSTAT2 for finding problems. More user-developed benchmarks (as
evil as they are) would be useful. We need some users to push
TurboIMAGE to its 1limits. What really happens when you specify
1023 items and 199 sets? See all you mechanics next year!

15

SO wolj 1S1IDVNI Nsuwyoueg |-V

(ind 3lvadn_ N340

A .0,

~(Ai0jid 8D ye 88690id yoyeq o|Buls) 98/

A%
vno ou suopydo ou
JOVII JOVNIoqInL

—
WY GBI odod

Jeupjoi/uie]iy
000€/3OVNI 8A 3DVYNIOQInL

(FUORORAURIL (S SO} B 1P
L L]

.......

| S VAV I TN [N NN N (N NN NN NN SN N S R .

—gqgﬁgﬁaﬂaqgtaqabqq—.ag

SO woy 1S1IDVNI Ylewyoueg g-v

foany) foamy) {oqmn) eid) oqm) el
Oudbon o 0Bui060 o]
S1ndgd

————————

ADPAN - Rev 2,10-86195 (C) 1985 The Boeing Co SAT, JUL 19, 1986, 9:46 PM
DUMP: D1861859.PUB.GOODIDEA PROGRAM: QUERY.PUB.SYS
1 L SEGMENT NAME PROCEDURE NAME P'REL STATUS

52575 S $CACHESEG CDT'ATTACHIO 00267 PM,XIN,L,CCE

52560 S $HARDRES ATTACHIO 00247 PM,XIN,L,CCG

52526 S SFILESYS1A IOMOVE 00654 PM,XIN,L,CCL

52333 S $FILESYS1A % FREADDIR 00232 PM,XIN,L,CCG

52213 § $USER HIDDEN'PT'001 00034 PM,XIN,L,CCG

52202 S $USER x HIDDEN'PT'020 77653 PM,XIN,L,CCE

52142 S $USER | HIDDEN'PT'012 00050 PM,XIN,L,CCE

50625 G SUSER GENMESSAGE 00077 PM, XIN,L,CCE

50373 G |TIMAGELL TRACEMSG 00376 PM,XIN,L,CARRY,CCE
50212 G |TIMAGE1l TRACEBLOCKREF 00071 PM,XIN,L,CARRY,CCG
50115 G !TIMAGEO2 ACTIVATEBLOCK 00467 PM,XIN,L,CCL

50070 G ITIMAGEOZ w» 2 L GETBLOCK 00046 PM,XIN,L,CCL

50051 G ITIMAGEO7 %'“” DBDELETE 74467 PM,XIN,L,CCL

47577 SEG! < UPDATE 06700 UM,XIN,TRAPS,L,CCG
27475 Qso8 DBIF 01143 UM,XIN,TRAPS,L,CARRY,CCG
27220 Qso0s8 SEARCH 00140 UM,XIN,TRAPS,L,CCE
27214 G $MORGUE'ABORT . TERMINATE' PM, XIN, L, CCG

A-3 (Turbo)
ADPAN - Rev 2.10-86195 (C) 1985 The Boeing Co SAT, JUL 19, 1986, 9:51 PM
DUMP: D1861860.PUB.GOODIDEA PROGRAM: QUERY.PUB.SYS
Q@ L SEGMENT NAME PROCEDURE NAME P'REL STATUS

52613 S $CACHESEG a¢¢ (CDT'ATTACHIO 00267 PM,XIN,L,CCE

52576 S SHARDRES ~'¢at —| ATTACHIO 00247 PM,XIN,L,CCG

52544 S SFILESYS1A 1% | IOMOVE 00654 PM,XIN,L,CCL

52351 S $FILESYSI1A FREADDIR 00232 PM,XIN,L,CCG

52231 S $USER < HIDDEN'PT'001 00034 PM,XIN,L,CARRY,CCG
52220 S $USER &> HIDDEN'PT'020 77653 PM,XIN,L,CARRY,CCE
52160 S $USER AN HIDDEN'PT'012 00050 PM,XIN,L,CCE

50672 G $USER GENMESSAGE 00077 PM,XIN,L,CCE

50440 G |TIMAGELL {[[TRACEWRITE 00321 PN, XIN,L,CCE

50310 G !TIMAGE1l TRACEBEGIN 00313 PM,XIN,L,CCG

50144 G !TIMAGEO2 FLUSH'ILR'XDS 00021 PM,XIN,L,CARRY,CCG
50117 G ITIMAGE02 §\% q{ LOG'BLOCK'TO'DI 00020 PM,XIN,L,CARRY,CCL
50100 G !TIMAGEO2 ILR'FLUSH 00041 PM,XIN,L,CARRY,CCL
50061 G !TIMAGEO2 REQUESTWRITE 00470 PM,XIN,L,CCL

50037 G !TIMAGEO? DBDELETE 75273 PM,XIN,L,CCL

47577 SEG' UPDATE 06700 UM,XIN,TRAPS,L,CCG
27475 Qsos :::5¢s DBIF 01143 UM,XIN,TRAPS,L,CARRY,CCG

A-4 (Turbo)

I - (000€/3DVNI) §-V
ww e R : R K wumh.umwﬁvw“whmwh.. oo
w.. acy‘.& —_ VQ R -
.. y X by . uuwax
| -. T e |

o 4
o JLUNIMNIL:

99277 8dUNL NIX WA - _rvaoku o OFLMATNG NIGW 058504 .
93 TVTSIUNLINIXTWNTSZ210 9330KIALNAQY HIYW I£211
9337 1'SdUY¥L 'NIX'WN 09££0 | —¥3%ndaq 9335989194 G091} w
900 INIX‘Md_ZPS92 N1 il 13ngas~d . POIDUWLI S £E211
900 VNIX WATEEZ00 Sy g - .1¢~aocmmu T WISASAIdS S £S8021 .
Joo.J. T YISASAIAS S 9b22H -
922 . £ [SIMQUYHS S _00£21 -
uouu44z~x4=m nnnoo;;: OTHOWLLY, 14D . D3SIHOYIE S 21£21
: ,) 322°71°Ud 122007 OId04LIWM N SIAQUYHE S 0PEZI -
: - 3937 rm-wwnoo LIUR - 2713NEI$ S SSEZ _
: - Sniuls = 3WYN LN3WOAS 1 0 -
o D04 [SIA WA THYNO0NS . “TYIUqTERB 2400 Tduna
i Wd SP!'9 ‘9861 ‘8| dYW T3IANL . 03 6utaog 2yl S8E6| () ZSZSE-10°'Z AN - NUJQH D
i ~

ADPAN - Rev 2.10-86195
DUMP: D1861859.PUB.GOODIDEA -
F# FILENAME
1 $STDIN
2 $STPLIST
3 QSOUT
4 QSIN
6 QSKIB
7 QSMSGCAT
8 TRACEOUT
9 IMAGECAT
0 SAMPLE 4— Root¥e
1 QSSELECT

N6 DAIASET FILES

1
1

ADPAN - Rev 2.01-85252

(C) 1985 The Boeing Co

“¢C) 1985

PROGRAM: QUERY.PUB,SYS

SAT, JUL 18,

198

6,

FOPT$ AOPTY¥ RECSIZE RECPT LOGCOUNT

002244 001700 -80 -1
002614 001701 -81 -1
000614 001401 -81 -1
000254 001400 -80 -1
002004 000524 -256 0
000005 000420 -80 208
000005 002303 -80 -1
000005 000420 -80 192
000001 000764 -256 - 6
002000 000524 =256 1

A-6 (Turbo)

The Boeing Co

TUE, MAR 18,

669

198

-1
-1
-1
-1

0
48
-1
76

7

6

6,

9:46 PM

DUMP) DD?771843.DATR. _ PROGRAM: DALYTST.PROG. _
F# FILENAME . FOPTZ * AOPTZ' [RECSIZE RECPT LOGCOUNT
1 $STDIN S 0003051001300 ~1024: -1
2 $STOLIST T 000705 001301 - —1024 g
3 $STDINX . 000305 001300 ~1024 -1
4_$5TDLIST 000705_001301__—1024 -1
5 CATALOG 000005° 0004207 T, 256 ... |
6 TE 1l 94— fO 0020013000764, 44
3 TE.“1327y . 002001 00070 “39.
% TE 109 0020017000704 87
ta TE. 105 002001 000704 -754 82
11 _TE. 136 002001_000704__-974 1406_ 590,167
12°TE. ‘113 . 50020017 0007047, =764 91T, - 21
13 TE 133 ‘ ”L *202001 000704 -1012 3
14 TE 104 - 002001:000704 "% —1012"° 208 '
15 TE (131 0020017000704 =930 0
16 TE" ‘101 002001 000704 -926 9706
17 TE 128 002001 000704 -1012 0

44 5o

45"

9
1
13

A-7 (I MAGE/3000)

21T

L2 I 3 2% 4

*46 SAT, NOV 22, 1986, 2:54 PM QUERY ., PUB.SYS 312859586
P LR U PR * * * *

* * * * * * Logical * Physical * Time
*Pin*Dst*Nest* Procedure .*Retrn* * * ——
* § * § *Levl* Name/Number *Code *Reads #*Writes*Reads #Writes* CPU * Wall
LI Tt DT * * * -

>46 1 ARMTRACE 312859828
<46 1l ARMTRACE 2 1l
S46 Stack space used = 535

P46 Trace word = %100037 Trace Flags = %000037

>46 1l DBOPEN 312859885
<46 1 DBOPEN 24894 10 11
S46 Stack space used = 1823

P46 Data Base ID: 0 Mode: 0 Base Name: (. .]

P46 Open Cnt: 0 Available Buffers: 0

>46 1 DBOPEN 312864580
>46 270 2 DBNewSize 312865610
<46 270 2 DBNewSize 2

>46 412 2 DBNewSize 312865788
<46 412 2 DBNewSize 2

>46 362 2 DBNewSize 312866343
<46 362 2 DBNewSize 2

>46 270 2 SetBufferCount 312866530
<46 270 2 SetBufferCount

>46 270 2 SetBuffercCount 312866703
>46 270 3 DBNewSize 312866788
<46 270 3 DBNewSize 2

<46 270 2 SetBufferCount -1

<46 1 DBOPEN 30 1 30 1l 1611 2516
S46 Stack space used = 1758

P46 Data Base ID: 242 Mode: 1 Base Name: TE’ [DATA .]
P46 Open Cnt: 1 Avajilable Buffers: 34

>46 1l DBINFO 312867494
<46 1 DBINFO 2 2

S46 Stack space used = 1704

P46 Data Base ID: 242 Mode: 501

P46 Qualifier: O Buffer Length Returned: 1

>46 1 DBINFO 312870988
<46 1 DBINFO 5 4
S46 Stack space used = 1704

P46 Data Base ID: 242 Mode: 203

P46 Qualifier: 0 Buffer Length Returned: 60

>46 1 DBINFO 312871479
<46 1 DBINFO 2 2
846 Stack space used = 1704

P46 Data Base ID: 242 Mode: 501

P46 Qualifier: 0 Buffer Length Returned: 1

>46 1 DBINFO 312871977
>46 270 2 DBOpenDset 312872101
<46 270 2 DBOpenDset

<46 1 DBINFO 1 1 328 387

546 Stack space used = 1803

P46 Data Base ID: 242 Mode: 202

P46 Qualifier: 1 Buffer Length Returned: 17

>46 1 DBINFO 312872838
<46 1. DBINFO 4 4
S46 Stack space used = 1704

P46 Data Base ID: 242 Mode: 104

P46 Qualifier: 1 Buffer Length Returned: 2

>46 1 DBCLOSE 312873291

A-8 (Trace file)

<146 1 DBINFO 3 2
§146 Stack space used = 1704

Pl146 Data Bage ID: 130 Mode: 102

P146 .Qualifier: 1 Buffer Length Returned: 13

>146 1. DBINFO 159343597
<146 1 DBINFO 3 3
§146 sStack space used = 1704

P146 Data Base ID: 130 Mode: 102

P146 Qualifier: 2 Buffer Length Returned: 13 :
>146 1 DBINFO 159344853
<146 1 DBINFO 3 3
5146 Stack space used = 1704 ,

P146 Data Base ID: 130 Mode: 102

P146 Qualifier: 3 Buffer Length Returned: 13

>146 1 DBINFO 1592346235
<146 1 DBINFO B |
§146 Stack space used = 1704

P146 Data Base ID: 130 Mode: 102

P146 Qualifier: 4 Buffer Length Returned: 13

>146 1 DBLOCK 1592347568
<146 1 DBLOCK 4 4
S146 Stack space used = 1692

P146 Data Base ID: 130 Mode: 6

P146 Lock Wait Flag: FALSE Lock Acquire Time: 0

>146 1 DBPUT 159347967
>146 410 2 GetBlock 159348080
>146 410 3 ActivateBlock 159348188
Rl46 Referenced block 0 from set 1.

<146 410 3 ActivateBlock 231

<146 410 2 GetBlock 231

>146 410 2 ReleaseBlock 159348553
<146 410 2 ReleaseBlock

>146 410 2 GetBlock 0((«9 ¥\oc\¢ 1‘ $A1 159348760
>146 [310 3 ActivateBlock Must RENS 159348866
>146 |410 4 RequestRead 159348952
<146 (410 4 RequestRead

R146 Referenced block 1 from set 2.

<146 410 3 ActivateBlock 2255

<146 410 2 GetBlock 2255

>146 410 2 ReleaseBlock 1592349419
<146 410 2 ReleaseBlock

>146 410 2 GetBlock . 159349626
>146 410 3 ActivateBlock 159349732
R146 Referenced block 1 from set 3.

<146 410 3 ActivateBlock 1243

<146 410 2 GetBlock 1243 BT

>146 410 2 GetWriteAccess \oce \, V\f'«*\'\' 159350116
<146 410 2 GetWriteAccess «® b [\

>146 410 2 GetBlock AL REsS) 159350336
>1461410 3 ActivateBlock N 159350442
R146 Referenced block 1 from set 2.

<146 410 3 ActivateBlock 2255

<146 410 2 GetBlock 2255

>146 410 2 GetWriteAccess 1592350785
<146 410 2 GetWrditeAccess

>146 410 2 GetBlock 159350998
>146 410 2 ActivateBlock 159351106
R146 Referenced block 0 from set 3.

<146 410 3 ActivateBlock 1749

<146 410 2 GetBlock 1749

A-9 (Buffer procedures)

References

[1] TurboIMAGE Data Base Management System reference manual
printed 12/85, Chapter 8

[2] IMAGE/3000 Data Base Management System reference manual

[3] Griffin, Doug, Introducing TurboIMAGE, Communicator 3000,
Volume 2, Issue 7, page 2-1 (U-MIT)

[4] Griffin, Doug, IMAGE/3000 Changes for MPE V/E and Disc Cache,
Communicator 3000, Volume 2, Issue 1, page 5-25

[5] CSL library, INTEREX
680 Almanor Ave.,
Ssunnyvale, CA 94160, USA
[6]1 CSL library

[7] Chen, Doris, "TurboIMAGE Internal file Structure", Proceedings
INTEREX HP3000 Madrid Conference, 1986, page 123

[8] Chen, Doris, ibid.

[9] Russell, Marguerite, The IMAGE/3000 Handbook, WORDWARE, 1984,
Seattle Washington

[10] TurboIMAGE Data Base Management System reference manual
printed 12/85, page 10-5

[11] IMAGE/3000 Data Base Management System reference manual

[12] Griffin, Doug, Introducing TurboIMAGE, Communicator 3000,
Volume 2, Issue 7, page 2-1

[13] TurboIMAGE Data Base Management System reference manual,
printed 12/85, page 7-8, "Logical Transactions and Locking"

[14] CSL library
[15] CSL library

[16] HP Response Center, STACK OVERFLOWS: Causes and Cures For
COBOL II Programs, Document P/N 5958-5824/2649

[17] Kane, Peter, TurboIMAGE Run-Time Options: Balancing
Performance with Data Base Integrity", Proceedings of
INTEREX HP3000 Madrid Conference, 1986

16

[18] CSL library

[19] TurboIMAGE Data Base Management System reference manual
print 12/85, Chapter 7, pp 7-23, 7-36

Author

Dennis Heidner received his BSEE degree from Montana State
University, Bozeman, Montana. Mr. Heidner has written "Transaction
Logging and 1Its Uses", presented at the 1982 HP IUG. He was co-
author of two papers, "Transaction Logging Tips" and "IMAGE/3000
Performance Planning and Testing”, which were presented at the 1983
HP IUG in Montreal. In 1984 he presented the paper "Disaster
Planning and Recovery" at the HP IUG conference in Anaheim. Mr.
Heidner 1is a co-author of The IMAGE/3000 Handbook, published by
WordWware, Seattle, Washington. He has written technical articles
which have been published in several magazines.

Mr. Heidner is a member of the Association for Computing Machinery
since 1982 and a member of the 1Institute for Electrical and
Electronic Engineers (IEEE) since 1974. He is a member of the IEEE
Computer Society.

ASTAR is Born!

Terrell Haines and Dennis Heidner
Boeing Aerospace Company

Abstract

What? Where? When? How? These are four commonly asked questions
when the programming staff is asked to make enhancements to exist-
ing in-house applications. The usual scenario is to pull out last
year's dataflow diagrams, structure charts, flowcharts and source
listings, flip a coin and hope that the analysis of the impact will
be correct. In order to make this process easier, most programming
shops have naming conventions and standard guidelines for coding
styles. While these are important, they are still a manual process
in an automated environment. What is needed is a programmer's
toolbox which will allow the use of a favorite editor but automate
the manual functions. This paper covers our search of available
third-party tools. After we could not find an acceptable package,
an in-house solution (ASTAR) was developed. We will discuss some
of the pitfalls, as well as free CSL programs which can be used to
implement similar programming environments at your site.

Introduction

Imagine, for a moment, that the company you work for has been
awarded a multi-million dollar contract to produce widgets. The
management information system, which currently resides on an
HP3000, cannot handle the increased demands without modifications
to the software. In order to accomplish the change, you request
that you have exclusive access to the keypunch, card reader, sorter
and card printer/interpreter for at least two months. You will, of
course, have a better estimate of the time to make the modifica-
tions after you use the sorter and card printer to find all the
lines that read from the "STOCK-ON-HAND" dataset.

By now, Yyou must think: This is insane! Why use old, obsolete
technology on an HP3000? After all, one of the most modern and
sophisticated programs manages our factory! (I designed it
myselfl)", Unfortunately, though, it's a simple fact of life that
the software development/maintenance groups are expected to use new
techniques and methods with tools that were developed ten or fif-
teen years ago. Even though the president of the company may boast
about the new, super-duper, paperless system used in the factory,
software designers are expected to use tools which leave thenm

paper-bound. In order to reduce the paper shuffling, special con-
ventions are used to name program modules, source files, datasets,
etc. Several librarians are hired and instructed to rigidly en-

force the standards, lest chaos break out!

How to maintain control of software associated costs has been the
focus of many studies. Various authors have proposed the 90/10
rule, which states that, for any system, 90% of the cost is soft-~
ware and 10% is hardware.[l1] In order to understand how software
costs are influenced, several "life-cycle" models have been
developed. The most popular of these has been attributed to Larry
Boehm. [2]

["svsTen
REQUIREMENTS
SOFTWARE
REQUIREMENTS
PRELIMINARY
DESIGN
DETALED
DESIGN
'\J__{cooe &
m\
TEST & PRE-
OPERATIONS
Q\\ OPERATIONS
[& M.

Elements of a Programmer's Toolbox

Let us first review the tools available to most programmers and how
they fit into the software design, development and maintenance

cycle. Some of these tools are absolutely required in order to
develop software, while others provide productivity improvements
for the developers. One observation which should be made is that
there is a far smaller selection of software tools for the HP3000
computer than most other manufacturers' machines. Perhaps this has
been caused by the tight control HP has maintained on the architec-
tures of the hardware and the MPE operating system. Tools are
available from three areas: HP, third party vendors and the
INTEREX contributed library (CSL/3000).

Computer-aided environments (CAE)

At the 1986 Structured Development Forum VIII, held in Seattle,
Washington, more than thirty vendors showed CAE packages which as-
sist system analysts and programmers in the structured design of
applications. Many of these packages were written to execute on
personal computers, DEC computers and IBM mainframes. The software
packages are intended to provide an environment where software en-
gineers can define, document, check, edit and maintain the software
specifications for complex projects. The specifications included
Data Flow Diagrams (DFD), structure charts, Warner-Orr charts and
more. Unfortunately, there are no such tools native to the HP3000,
even though one of the vendors was HP! (Their product is called HP
Teamwork/SA.)

Editors

The most-frequently-used software development/maintenance tool on
the HP3000 is the editor. HP supplies one editor, called
EDIT/3000, as part of the Fundamental Operating System. This
editor provides the minimum features required for the software life
cycle. HP provides a means to enhance this editor's functions with
user-callable procedures but these advanced features are generally
not used by most installations because of the training necessary.

HP also offers what they refer to as the Text Document Processor,
(TDP). This editor has corrected many of the original shortcomings
of EDIT/3000 by including such features as document formatting, an
enhanced find command, greater macro capability, better online
help, block mode (page) editing and the ability to easily access
other programs without exiting the editor. TDP, however, does not
support many of the features that EDIT/3000 does. These include
user-written procedures and editing variable length files.

Robelle Consulting offers a programmer's editor called QEDIT. This
editor has been tuned for speed. By having a high speed editor,
you might think you would have to give up functions. QEDIT,
though, proves this to be false. QEDIT allows the user to invoke

UDC commands while editing, comes with a "scribe" function,
operates in screen mode and adds many features that I wish TDP had.
Text files saved by QEDIT have additional QEDIT information stored
within the file's user label. Robelle provides special QEDIT ac-
cess routines which allow user programs to take advantage of the
stored QEDIT information,

FSEDIT, from SYDES, is another editor designed with the programmer
in mind. FSEDIT offers many of the same features of TDP and QEDIT,
in addition to split screen editing (access to multiple files at a
time), and a built-in COBOL program generator.

HPTOOLSET, by Hewlett-Packard, is an integrated program development
package, especially suited to aid the COBOL programmer. It con-
tains an editor, a direct 1link to HP3000 COBOL compiler and seg-
menter, a symbolic debug facility and a workspace/file manager.
While the package claims inteqgration, HPTOOLSET, according to the
manual, "... 1is not intended to be compatible with COBOL 68,
EDITOR/3000, DEBUG or any other programming tools currently avail-
able on the HP 3000." [3]

My favorite from the CSL library is QUAD. QUAD provides high speed
editing, version control, and an undo command. Document formatting
is accomplished by using GALLEY (also from the CSL library) or the
TDP formatter. One of the most unusual features of this powerful
editor is that the SPL source code is also in the library.

Compilers

The compilers available for the HP3000 include BASIC, COBOL,
FORTRAN, PASCAL, RPG SPL and C (available from third party ven-
dors). A version of FORTH is available from the CSL3000 release A0O
tape. Not available are complete implementations of PROLOG, LISP,
SNOBOL, PL1 or ADA. Fourth generation packages available include
products such as BRW, TRANSACT, RAPID (from HP), POWERHOUSE
products from COGNOS, PROTOS from Protos Software Company,
FLEXIBLE/3000 from SAGES-AMERICA, SPEEDWARE from InfoCenter,
PDQ/Quiz from Tymlabs and FASTRAN from Performance Software Group.

Linkers

The linker-of-choice on the HP3000 is MPE Segmenter, which is also
"the only game in town". Seldom is the Segmenter divorced from a
compiler and used as a stand-alone package. However, there are in-
stances when the situation calls for analysis of how Segmenter is
affecting a Jjob. In that case, the analyst must turn to a very
powerful tool, the Segmenter manual. It not only explains the
Segmenter, it also introduces the concepts of "virtual memory" and

"segmentation". These two ideas are keys to the operation and use
of this tool. It also explains such concepts as Relocatable Binary
Modules (RBMs) and User Subprogram Libraries (USLs), using easy-to-
grasp analogies.

Segmenter is a dynamic, run-time linker; that is, final links to
segmented libraries (SLs) are established when the program is run.
This explains why, when a LIB= statement is not included in the RUN
statement, MPE sometimes proclaims "UNRESOLVED EXTERNAL REFERENCE"
or "PROGRAM LOADED WITH LIB=G". Those final connections to the
outside world must be made.

If a program is PREPed to a given USL several times, and no
CLEANUSL is invoked to compact the USL, the Segmenter will create
several sequential versions of the RBMs. This allows an analyst to
actually return to a previous version of a given module. Of
course, it also requires the analyst to keep records of what is in
each of the various versions. This is perhaps a small cost for the
available power.

Debugging Tools

MPE Debug is the Hewlett-Packard tool which is used to locate and
correct errors interactively in programs. Invoked at run-time,
Debug can set breakpoints which will temporarily stop program ex-
ecution and turn control over to the analyst. Various commands al-
low viewing of memory in real-time, during program execution. 1In
addition, Debug gives the ability to actually change the value of
memory locations during execution. The STACKDUMP intrinsic enables
a selective memory dump to the screen, the printer or other output
device.

MPE provides a command, :SETDUMP, which allows the user to request
a copy of the stack markers, the user data portion of the stack or
both to be printed on $STDLIST whenever a program aborts.

SOOT.PUB.TECH, from the CSL3000 tape, may be used to capture an ac-
tive program stack for later analysis. The method of doing this is
to use the SHOW command to find the PIN number for a given process.
Give the DUMP command with the PIN number following, and SOOT will
produce a formatted dump file with the name DAddhhmm, where ddd is
the Julian day, hh is the military time hour and mm is the minute
at which the dump was created. If multiple dumps are created
within the same minute, the mm figure is incremented by one for
each new dump file.

ADPAN.PUB.TECH, from the CSL3000 tape, was created by Dennis
Heidner to address shortcomings in STACKDUMP. Equipped with an

on-line help facility, it provides visibility of the segment call
paths, file information, memory locations relative to the current
stack marker and miscellaneous program information for a given for-
matted dump file.

A companion to ADPAN is SNAPSHOT, an intrinsic which may be called
by a running process in order to take a picture of itself. It
creates a stack dump, with a name in the same format as
SOOT.PUB.TECH.

Crossreference Tools

Crossreference options are available in all of the compilers of-
fered by HP. The option is turned on by a $CONTROL card placed at
the start of the source code being compiled. In addition, there
are several user-written crogssreference tools in the CSL. These
include SPLXREF (for SPL), BASXREF and XREFB (for BASIC), COBMAP,
COBXREFA and SYSXREF (for COBOL) and RENUMBER (for FORTRAN).

There are a few programs which help tidy up the source code, but
very few flowcharting programs are available. This is a sharp con-
trast from most other minis and microcomputer systems.

Dictionary

HP, COGNOS and several other vendors offer data dictionary
products. Dictionary/3000 from HP can be used as a standalone
product or used wtih their 4GL products, BRW, RAPID and TRANSACT.
COGNOS' dictionary is required by their POWERHOUSE products.
COGNOS also provides a utility which allows migration of their dic-
tionary information into HP's dictionary.

Program Generators

on the CSL3000 release BO tape can be found COBGEN, a COBOL 68
Program Generator. This program assists in the initial stages of
writing a COBOL 68 program by prompting <the user for necessary
entries. Some extra features are support for the QUAD editor from
inside COBGEN and support for the COBOL COPY statement. Existing
source code can also be modified by use of a parameter in the RUN
statement.

FORTRAN preprocessors are available from the CSL3000 tapés, also:
TELETRAN, from release 09; RATFOR, from release A0; FTN from
releases BO or ANAHEIM.

Tymlabs offers a product called PDQUIZ which will generate HP3000
object code from COGNOS' QUIZ language. The Protos Software

Company offers a 4GL language, which, in essence, allows your
programming staff to write in a pseudocode which then translates
into COBOL. Q-GEN, from Proactive Systems Ltd, will generate COBOL
report programs from QUERY commands.

Comparision Tools

BLDTEXT, written by Karl Smith, is available in the CSL library.
BLDTEXT will take a current version and an old version of a source
file and produce a file which contains the $EDIT commands which
reflect any new 1lines, deleted lines or updates made on the new
file. The files must both be numbered ASCII files. The output of
BLDTEXT 1is compatible with the HP compiler standard for master and
edit files. [4] FILECOMP and COMPARE are two other file comparision
routines from the CSL library.

SCONS, by Corporate Computer Systems, compares two files and prints
a listing of differences, allowing one to quickly spot specific
changes between two revisions. It creates a file of difference
records called a "delta" file, which allows reconstruction of
previous revisions.

S/COMPARE, by Aldon Computer Group, is a source file comparison
program for identifying differences between any two versions of a
program.

HARMONIZER, by Aldon Computer Group, is a source comparison program
for multiple versions of a file, which can produce a file of merged
records of the input files. HARMONIZER supports COBOL, FORTRAN,
PASCAL, SPL, COGNOS, TRANSACT, BASIC, COBOL Copy Libraries and any
character data files whose record lengths do not exceed 80 bytes.
Harmonizer is a spawned process which extends S/COMPARE's
capabilities, allowing it to compare up to 16 versions of a file.
According to company literature, "an output file can be produced
that 1is a composite of all compared versions of a program, option-
ally annotated with language-specific comments to describe the
source of insertions and deletions.”

O/COMPARE, by Aldon Computer Group, compares object code files to
verify that program files that are expected to be the same are the
same and that a production module was created by the current source
file.

Job Control Language (JCL) Aids
PUDC, from the CSL3000 tape, allows the capability of programmable

UDCs. These UDCs may include such commands as IF, GO and GOSUB.
Streaming of jobs with insertion of parameters is also possible.

Computer

Museum

MPEX extends the capabilities of MPE so as to allow operations upon
entire filesets or even file subsets. A demo of MPEX is on the
CSL/3000 Release A0 tape. A fully-supported version is available
from VESOFT. MPEX users often become addicted ¢to it power and
reportedly have refused to accept jobs at sites without MPEX!

There are a number of packages which allow the gueueing of jobs for
submittal 1later at night. The most common ones from the CSL are
SLEEPER and JOBQUEUE. There are a number of vendors which offer
data center management tools which help schedule and track when
jobs should run. :

JOB CONTROL SYSTEM/3000, by Diamond Optimum Systems, provides a
real-time audit trail for Jjob and session execution. It also
provides an expanded :SHOWOUT function. The audit trail informa-
tion is stored in an IMAGE database and is integrated with
DOCUMENTATION/3000.

Documentation Aids

HPSLATE, from Hewlett-Packard, provides a casual word processor
designed to be used by business professionals. It features full
screen, page-oriented editing and uses the function keys of HP ter-
minals. Due to the question-and-answer dialogue designed for in-
frequent use, it is not appropriate for other than a casual user.
It is available in Italian, French and German.

HPWORD, from Hewlett-Packard, is a shared resource word processor,
designed to be used with a special HP Word Processing Station, con-
nected to the HP3000. Graphs and charts may be inserted into
documents.

IASTWORD, from Trident Data Systems, operates on HP block mode ter-
minals. It allows full screen editing and has an on-line help
facility. There are no embedded commands, although it does allow
text enhancements such as underlining and boldface.

SPEEDDOC, from Bradford Business Systems, is a word processing and
office automation system. The word processor has on-line help and
full-screen editing. MPE commands may be executed from within
SPEEDDOC. Data from IMAGE, KSAM and MPE files may be joined
directly to word processing documents. Numerous printers are sup-
ported. In addition to the word processor, electronic mail,
tickler files, room/equipment scheduling, mass mailing facilities
and a spelling checker are included in SPEEDDOC.

GALLEY, from the CSL3000 tape, is a batch text file formatter which
uses Edit/3000 or TDP files as input. The output is on a printer.

GALLEY is directed by embeddeded commands. There are also versions
of the popular UNIX like NROFF document formatter in the CSL.

DOCUMENTATION/3000, by Diamond Optimum Systems, is a program
documentation package which includes a wide-ranging on-line cross~-
reference facility.

Spelling Checkers

SPELL/3000, from Bradford Business Systems, is an interactive
spelling checker for standard ASCII files. New words can be added
to the dictionary, or separate user dictionaries can be created and
modified. A list of most-misspelled words is interrogated first.
If the word is found there, it is automatically corrected. Actions
are function-key-driven.

Tracking Tools

ROBOT/3000 AUTOMATIC DOCUMENTER, by Productive Software Systems, is
an on-line indicator of proposed changes to programs. It produces
a display of which programs are affected by a change and the
line(s) to be changed.

ROBOT/3000 AUDITOR, by Productive Software Systems, keeps track of
file modifications. The amount of history retained is user-
definable. It also alerts the user to file purgings, so that an
accidental file purge can be restored before the backup file is
erased. No manual input is required. ROBOT supports all MPE
files.

ARCHIVE/3000, by Fourhills Technology Group, monitors versions of
files. It removes older copies of a file from disk to tape and, if
desired, will delete the original file. ARCHIVE has a file com-
parison function. File security functions are available, also.

LITSCAN, from the CSL3000 tape, was originally designed as a
bibliographic retrieval system, based on keywords. However, it ap-
parently could be used to track program documentation.

Project Planning

Very few companies can ignore the bottom line, COST. Meeting the
goals for a new software system, on time and within budget requires
careful project planning and monitoring. The CPM and PERT are the
two most popular methods for planning large complicated projects.
The CSL library has several contributions which can be used by a
development team. These are PERT, SCHED, and PRTCHRT.

The Hewlett-Packard Business Systems Software Solutions manual
identifies at least two project planning packages. N5500 Project
Management System, from Nichols & Company, is "... an interactive
project management system for planning, simulation, tracking &
documentation of projects". TASK TRACKER, from Medina Marketing
Group, "... tracks and reports on the progress, status, schedules
and costs of defined projects and their subordinate tasks".

Desired Features

Thus far, we have covered the common tools used by the design and
development team. As you can see, there is a great deal of diver-
sity in the products that are available (we ran out of space). Now
imagine for a moment, not the gloomy picture we started the paper
with, but a utopia. Every part of the specification and design
process has CAE tools to assist you. Even though the code is to
run on an HP3000, you can use your favorite PC. When you are for-
ced to make last minute changes in the code, the DFD's and struc-
ture charts are automatically updated. When it's time to write the
user's documentation, all you have to do is push a button. The
release bulletin is all automated. Test scripts are generated
which provide the degree of coverage that is specified in the
design document. Any errors which later arise (there are not
many!) in production will automatically flag the sections of code
and/or the specifications which are at fault. Although this might
sound like idle daydreaming, it's what has been called
"Imagineering” by the Disney design laboratories.

While “imagineered" designs are sometimes only a dream, the dream
software environment should become reality. During the past five
years, we have seen an explosion of CAE tools which allow the com-
puter hardware engineer to design complex circuits that were impos-
sible to imagine five years ago. These new tools are capable of
accepting specification/design statements and generating the inter-
nal signal routing, test patterns/vectors, and perform design rule
checks.

Let us imagine then that it is within our power to create some form
of our ideal. What would it be like? Any "new and improved"
programming environment would need to accommodate most, if not all,
of these tools. Before starting such an ambitious project, we set
down a few objectives which we wanted to meet. They were:

Womb~to-tomb Environment

The 1ideal programming environment provides a uniform set of tools
which can be used from “womb-to-tomb" by directing the output of

10

one tool into the next tool. 1It's important to remember in the
model presented by Boehm that you may sometimes need to backtrack
and adjust work done in the previous step. The ideal tool will ac-
comodate this to the extent that, if a problem in a program would
require the use of a different algorithm, the dataflow diagrams and
structure charts should be flagged as obsolete or invalid. Enough
information should be sent backward to simplify the updating of the
design and requirements documents.

Allow Use of Favorite Tools

One of the most significant costs of the software life-cycle is the
cost of training and the associated learning curve. The ideal en-
vironment must allow the use of the programmer's favorite editors,
compilers, etc.

Enhance/augment Programmer's Productivity

The programming environment must improve the productivity of the
tean. Although this seems obvious, all too often software tools
are written which require you to adopt their standard coding con-
ventions and use a specific development methodology. Often these
new rules are difficult to use.

Flexibility

There has been increasing interest in a new software development
called prototyping. With this new development process, much of the
traditional 1life-cycle is eliminated. Instead, using a newer
fourth- generation language, a software specification is written,
compiled and tested by the end-user. If the application does not
perform as expected, the specification is modified and recompiled.
Prototyping allows the end-user to become involved in writing the
specifications, thus eliminating much of the traditional collection
of system analysts, programmers and coders.

Open Architecture

No one individual or company can anticapate every potential use for
the programming environment, nor can the languages of the future be
predicted. For this reason, it is critical that the programming
environment be an open architecture. As the need arises, we must
be able to write new tools which are easily dovetailed into the
current collection of tools. The success of such an open scheme
may be clearly seen in the diverse collection of MSDOS and UNIX
tools.

11

ASTAR

ASTAR (Automated Software Tracking And Reporting) was our answer to
the shortage of programmer tools for <the HP3000. Developed in-
house, it provides an inteqgrated source for producing programmer
information. Where a specific tool did not exist, it was written.
If a tool did exist, it was dovetailed into the system. ASTAR was
written to be expandable. New functions, if not directly attach-
able to the system, may be added to the main menu.

ASTAR r——‘
oB (2757
DESIGNER S] T
<« ASTAR
PROGRAMMER

[soFTware CROBS- [PrOGRMS
Nk o | oS
MAINTAINER

ASTAR FLOW DIAGRAM

ASTAR provides an automated means to track software modification
requests, work progress, software changes and also estimate the im-
pact of changes that modifications to one module might have on
others. ASTAR, as such, provides the framework for a programmer's
workbench on the HP3000 computer.

ASTAR was designed so that it can be used with an application which
has already been designed and is in use. Special stream jobs were
created which crossreference and index all files withing the ap-
plication, once this is done, only the files which are modified are
reexamined.

ASTAR Progranms

ADEDFILE 1is a program which scans the ASTAR database and removes
all references to files and datasets that no longer exist. The

12

algorithm used by ADEDFILE is quite simple. We just serially read
the master set which contains the file names, then we check to see
if the file still exists (use programatic :LISTF). If it is no
longer, then the references to the file are removed from the ASTAR
database.

AMERGE is a general purpose INCLUDE/COPYLIB program, which also
supports the $EDIT control options. AMERGE is intended to be the
"shell" through which current vendor-supplied programs must work.
AMERGE is table-driven, with the ability for the users to add "new"
packages by describing the interface. This description would in-
clude whether or not we are to direct the processed file to a
"pipe" or write to a file. AMERGE has process-handling capability
so it can create and activate the desired program.

APRINT is a command-driven program which will locate and print the
section of any text file containing a specified object. APRINT
opens up the ASTAR database, then parses the command passed to it.
The output of APRINT can be directed to any file. APRINT will au-
tomatically set up a file equation "AFILE" which points to the last
file it was printing. This allows the user to locate and view a
file with APRINT, then recall it into the editor without ever know-
ing the name of the source file!

ADPAN is a program which assists in the maintenance of programs
which have been released into production. ADPAN (and SNAPSHOT)
work together to capture program aborts. This post-mortem informa-
tion significantly reduces the time required to isolate program
aborts.

ASNAP is a program which prints a summary for snapshot files. The
summary includes the program name, date and time of abort.

ATREE is a program which will generate a procedure tree, starting
at a name specified by the user. ATREE takes the procedure name
specified by the user, then looks up all procedures called from the
one specified. For each procedure it finds, ATREE in turn recur-
sively calls itself in order to process the next lower level. The
output can be redirected to another file, where it can be processed
into a structure chart.

DSETXREF is a program which reads a specfied source file and lo-
cates all references to datasets in a specified database. DSETXREF
accepts a specific database name, then builds a table of datasets.
Then every text file that has been modified is scanned looking for
the dataset name. As a name is found, it is added to the index.

13

ERRXREF will scan all source files and update the index indicating
where a specific error number is used. There are no standards on
how an error number must be coded. This presented a special
problem when we were developing ASTAR. The final solution was to
allow "trigger" and "“terminate" strings to be specified. Any
character between the trigger and termination will be considered an
"error number". This implementation allows "error numbers" to con-~
sist of any ASCII character, for example: "CIERROR 976",

JOBXREF will scan all stream jobs and build an index indicating
where and how files are accessed. JOBXREF loocks at the first line
in the file and verifies that we are working with a MPE JOB com~
mand. Then the "stream" character, (typically :, ! or #), is
retained. Any 1line in the file which begins with this stream
character will be considered to be a command and not data. JOBXREF
loocks at the logon name, then reads into a table the user defined
commands (UDC) for that specific user. As a command in the stream
file is encountered, the UDC table is scanned. Any file which is
referenced by the command is added to the index. JOBXREF has been
written to understand the syntax for the software tools supplied as
part of FOS. This includes QUERY and FCOPY.

PROCXREF will scan the program source code and build an index which
contains characteristics of the procedures and what procedures are
referenced. PROCXREF is syntax-driven, enabling it to determine
characteristics of the procedure it is analyzing. Every time a new
procedure is encountered while scanning source files, the summary
compiled to that point is added into the database.

PROGXREF scans the object files for revision numbers and picks up
the program characteristics.

UDCXREF reads all the udc commands in use for the account and
builds an index of who uses which commands and what they are.
Later JOBXREF uses this UDC index to assist in tracking where, when
and how files are referenced.

How ASTAR Detects File Changes.

The ASTAR stream Jjobs use DIRK from the TECH account to locate
which files have been modified in the 1last 24 hours. The fully-
qualified name of these files are written to a workfile. Later,
the ASTAR programs use this workfile, which concentrates the index-
ing on just the modified files. There are several other programs
in the CSL which could be used to perform the same task, or MPEX
could be used. Another method would be to require the system ad-
ministrator to turn on logging of FCLOSE records; then a special

14

program could be written to extract these records and build the
worklist,

ASTAR Screens

ASTAR is menu-driven, with screens written in QUICK from COGNOS.
An example of the opening ASTAR screen is shown in Appendix A-1.

ASTAR SR'S

The SR screen is used to enter an inquiry on software modification
requests. An example of this screen is shown in Appendix a-2.

The fields are defined as follows:
SR# -~ Modification request number (automatically assigned
when entering requests, although you may override)
NAME - Program, job or procedure name where problem most
likely occurs.
REVISION ~ The projected revision number that the software
will have at the time this SR is closed
TOPIC - Is the SR to correct a bug or make an enhancement?
Allowable values are:
* Perfective - enhancements of the package
* Adaptive - changing to keep up with new rules or
operating procedures
* Corrective - correcting a mistake
USER - The logon ID or group of users requesting the change
REQUESTOR - The name of the individual requesting the
change
ASSIGNED TO - The analyst to be responsible for planning,
evaluating, designing and implementing the
change
DATE SUBMITTED - The date the SR was logged into ASTAR.

ASTAR JOB INFO

The JOB INFO screen provides a summary report on the function of a
stream job, the jobname, its purpose, author, revision and when it
was last modified. An example of the screen is shown in Appendix
A-3.

The fields are defined as:
JOB SOURCE ~ The stream job's source file
JOBNAME - The job/session id, (!JOB jobname,<<user.acct>>)
ACCOUNT - The account in which the stream job resides
GROUP ~ The file group in which the job resides
FIRST REC. - The first record number of the stream job.
This feature is used by sites in which all

15

stream jobs are in one large file, and a
program extracts jobs to be launched

LAST RECORD - The last record in the stream job

REVISION - The version number for the stream job

TYPE - The type of stream job; for example, report, compile,

maintenance, system operation, etc.
ASTAR DATE - The date the job was last modified
PURPOSE - The purpose of the stream job.

JOB/FILE INFO

The JOB/FILE INFO screen provides a easy method for the programmer
or analyst to determine where and how files are used. This screen
provides only for the viewing of information, no changes may be
made. An example of this screen is shown in Appendix A-4.

The fields are defined as:

SOURCE - The file to be checked

UDC COMMAND -~ If there is anything here, the file was
referenced through a UDC command in a stream
job

MPE COMMAND - The MPE command invoked when the file is
referenced

STREAM JOB - The stream job which contains the reference

R# = Logical record number in the stream job where the

SOURCE file was referenced
DATE - The date the file was crossreferenced.

PROGRAM INFO

The PROGRAM INFO screen provides a quick summary of programs, pur-
pose, revision history, comments and size information. An example
of this screen will be found in Appendix A-5.

The fields are defined as follows:
NAME - The internal procedure name for the program to be
checked
SOURCE - The executable object file for the program
REVISION - Revision number (if any) for the program
ASTAR DATE - The date the program was crossreferenced
PURPOSE - The purpose of the program
COMMENTS - Comments about the program
MAXDATA - The maximum stack size with which the program
was PREPed
SEGMENTS - The number of segments in the program file
CODE SIZE ~ The size of the object file
COMP. JOB -~ The stream job which will recompile the program

16

PROCEDURE INFO

This procedure provides a general summary about the construction of
a piece of particular program procedure. An example of this screen
is shown in Appendix A-6.

The fields are defined as follows:
NAME - The procedure name
SOURCE - The editor source file for the procedure
PURPOSE - What this procedure is supposed to do.
INITIALS - The initials of the author for the procedure
TYPE - The type of procedure, SUBroutine or FUNction.
LANGUAGE - The high level language in which the procedure

is written

STATUS - The current condition of the procedure:

o DONE = in production

o PLAN = planned

o CODE = being coded

o DBUG = being debugged

o MAIN = on-going maintenance is being performed

REVISION - The revision number of the procedure
ASTAR DATE - The date the procedure was crossreferenced
FIRST REC. - The logical record number of the first line of
the procedure in the source file.
LAST RECORD - The last logical record number of the
procedure
LINES OF CODE - The number of lines of executable code
(comments and data declarations have been
excluded)
LOOP COUNT - The number of DO loops, or DO UNTIL~type
statements in the procedure
OF GOTO'S - The number of GOTO's in the procedure
OF IF'S - The number of conditional branches in the
procedure
EXPRESSIONS - The number of assignment expressions in the
procedure
OF I/0'S - The number of I/O-type statements which are
used in the procedure (i.e. WRITE, READ,
DISPLAY)
CALLS - The number of references to other procedures from
from within this procedure.
FORMATS - The number of FORTRAN FORMAT statements
OF EXITS - The number of unique exit points from this
procedure
MISC - The number of executable statements which do not fit
one of the above classifications.
COMMON BLOCKS =~ The number of named COMMON blocks that have
been declared for this procedure.

17

PROGRAM CALL CROSSREF

This screen provides a crossreference of locations that a specified
procedure has been called by other modules. An example of this
screen is shown in Appendix A-7.

The fields are defined as follows:
PROCEDURE - The name of the procedure which we are
crossreferencing
CALLED BY - A procedure which references the subroutine
REFS - The number of times the subroutine is called by
that reference.

ASTAR CALL TREE

The CALL TREE screen is used to produce a structure chart for a
program or procedure. An example of this screen is shown in
Appendix A-8. When asked for a procedure name, enter any VALID
procedure name that has been coded. There are several options
which you may specify. They are:

;OUT=filename - specify output filename

;LEVEL=nn - specify the number of levels in the tree or

structure chart.
;EXT - include references to system intrinsics

ASTAR DATA SET XREF

The DATA SET XREF screen allows the user to determine where a par-
ticular dataset has been used within a program or set of programs.
An example of this screen may be seen in Appendix A-9.

The fields are defined as follows:
NAME - The dataset name for which we are looking
USED IN - The filename which contains a reference to the
dataset
R# - Logical record number of the reference to the dataset
DATE ~ The date that the file was crossreferenced.

ASTAR $INCLUDE, XEQ, USE FILES

This screen allows the user to locate everywhere a particular file
is used as either an USE, XEQ or S$INCLUDE file. An example of this
screen may be seen in Appendix A-10.

The fields are defined as follows:
INCLUDE - The name of the file being checked
USED BY - A file that uses the specified file
TYPE - Reference to the file was made by either a USE

18

(EDIT/3000), XEQ or SINCLUDE
R# - Logical record number where the reference was made
DATE - The date that the crossreference was made.

ASTAR UDC COMMAND CROSSREF

This screen allows the user to identify which logon user accesses a
particular UDC file, and what commands are available to that user.
An example of this screen is shown in Appendix A-11.

The fields are defined as follows:
SOURCE - The name of the UDC file to be examined
COMMAND - A UDC command name
USER - Logon username and account name which can use the
command specified in the UDC file.
R# - Logical record number in the UDC file with which the
command starts.
DATE - The date that the UDC file was crossreferenced

LOCATING FILES AND PROCEDURES - APRINT

The APRINT subsystem allows the user to locate and print the occur-
rence of a file, error number, dataset reference, procedure,
program, procedure call and more. An example of this screen may be
found in Appendix A-12.

The allowable commands are:

ERR= - Locate a specific error number (ERR=2.5 will find
all references to PROG-ERR 2.5)

DSET= - Locate a specific dataset (DSET=USER-DETL will find

all references to USER-DETL)

FILE= - Locate a file or set of files (FILE=@.SOURCE will
print all files in the SOURCE group)

PROG= - lLocate everywhere this program is used
(PROG=STARTJOB.PROG will find all references to the
program STARTJOB.PROG)

PROC= - Locate the procedurename (PROC=GETDATE will locate
the subroutine, function or outer block whose name
is GETDATE)

JOB= - Find the filename which contains the jobname
specified (JOB=CALDUE will find the stream job which
will logon with a jobname of CALDUE)

XEQ= - Find all references to the XEQ, USE or SINCLUDE file
(XEQ=LOOK will find all references to the QUERY XEQ
file LOOK)

CALL= - Find everywhere the specified procedure is CALled.

(CALL=GETDATE will find all references to GETDATE)

19

APRINT does not upshift the object for which you have requested it
to search. However, the information stored in the ASTAR database
may be upshifted if the language for the source file is not case-
sensitive. This allows for APRINT to be used by FORTRAN, PASCAL
and C-type languages.

Also, you must remember that some languages 1like FORTRAN do not
consider blank spaces within a name to be significant, whereas SPL,
COBOL and PASCAL do. If the language that the source file normally
uses removes extra spaces or characters, so will the ASTAR cross-
referencing programs.

You may optionally request the listing be directed to a file by
using the ;0UT=filename option.

Problems

Early success in crossreferencing stream jobs provided quite a bit
of encouragement, then the realities of life set in. Frequently we
would run into programs that appeared to discourage the dovetaill-
ing that we desired. For instance, with EDIT/3000, we can specify
the file to be editted externally by using the commands:

:FILE AFILE=source
:FILE EDTTEXT=*AFILE
:RUN EDITOR.PUB.SYS, BASICENTRY

When we exit EDIT/3000, the file is automatically kept back in the
original file. On the other hand, the TDP equivalent is:

:FILE AFILE=source
:RUN TDP.PUB.SYS;INFO="TEXT *AFILE"

With TDP, the file is read in okay, but when you try to exit or
keep the file, TDP generates the error message "blank file name".
Although this appears to be petty at first, it does become a real
problen. One of the tasks we wanted to implement was the creation
of master and edit files automatically. This is ONE step to a ful-
ly automated environment, held up by a balky program.

Some of the programs we used in the TECH account were modified over
time by Kevin Sheely to allow a more versatile use. One progranm,
DOCUMENT.PUB.TECH, had not expected to process more than 32,767
lines of source code. Others, such as REFEREE, were enhanced to
allow a longer string to identify the program revision.

20

PROGINFO, SCANNER and others from the CSL were modified to be more
flexible in specifying input and output options.

In SPL and FORTRAN/3000, the procedure relative addresses are dis-
played to the left of the actual source lines. In COBOL, and now
FORTRAN77, this information 1is displayed in a map at the end.
There 1is no standard which specifies how this information is to be
displayed. The presentation of this information is totally in the
control of the vendor. As a result, this hampers the development
of additional tools, such as symbolic debug packages (yes, HP has
TOOLSET, but it does not support all the languages) and data
flow/data dictionary rule checkers. Third party vendors who wish
to write compilers and support symbolic debug must cope with the
lack of information on the format in which variables & symbols are
stored within the program file.

Equally as distressing is the state of dictionaries. 1In general,
if you wish to use a vendor's dictionary, you must commit to the
use of their 4GL tools. HP allows a Dictionary/3000 user to enter
and maintain a dictionary for existing applications, but they do
not provide any supported intrinsics to access the dictionary with
user-written programs. The lack of intrinsics from HP is cushioned
somewhat by the fact they have implemented DICTIONARY/3000 on an
IMAGE database. Users of COGNOS' POWERHOUSE dictionary, however,
are left out in the cold. The POWERHOUSE dictionary is a binary
file. Although it would be possible to decode it, the user would
be 1left with a real maintenance headache. We are almost forced to
re-invent the wheel, if we want to integrate a data dictionary with
ASTAR.

Closing Remarks.

ASTAR was a monumental task! To date, due to a lack of uniformity
in most of the outside vendor tools, the implementation has been
restricted primarily to the software tracking aids. For instance,
TOOLSET stores its software in a special TSAM format. If you wish
to read a TOOLSET-developed program, you must either first convert
it to a "flat"™ MPE file or DECODE the internal TSAM file source
storage system. The "INCLUDE/COPYLIB" is not the same between all
of the compilers. In order to extract the characteristics of the
procedures we are indexing, PROCXREF is in itself a "compiler". So
far, we have only implemented the extract code for FORTRAN. About
the time we conceived and started to implement ASTAR, ROBOT/3000
was introduced. This appears to the the most complete of the third
party packages, nearly meeting all of our original goals.

21

A good programmer's workbench is desperately needed for the HP3000.
As we mentioned earlier in the goals, it 1is impossible for one
person to predict all the different ways the environment would be
used. Perhaps we (the HP3000 community) need to form a "Software
Tools Interest Group". Such a function could be useful in specify-
ing a standard Tool Interchange Format (TIF). Vendors could then
be encouraged to adapt their tools to work with the TIF. The
CSL/3000 library could assist by working with the library's authors
to adapt their tools to the new format. Whatever the means, let us
address this task. We invite your views on this subject.

22

References

[1] Miller, Edward, Tutorial: Automated Tools For Software
Engineering, IEEE Computer Society, 1979, page 2

[2] ibid, page 3

[3] HPToolset Reference Manual, printed 7/82, Preface - page v

Authors

Terrell Haines has been employed as an Electronic Data Processing
Analyst for the Boeing Company since 1980. He has been editor, and
is currently a columnist, for the Boeing Employees' Computer
Soclety Newsletter. Mr. Haines is also a software reviewer for
Design News magazine.

Dennis Heidner received his BSEE degree from Montana State
University, Bozeman, Montana. He Jjoined the Boeing Aerospace
Company in 1978. Mr. Heidner has written "Transaction Logging and
Its Uses", presented at the 1982 HP IUG. He was co-author of two
papers, "Transaction Logging Tips" and "IMAGE/3000 Performance
Planning and Testing", which were presented at the 1983 HP IUG in
Montreal. In 1984, he presented the paper "Disaster Planning and
Recovery" at the HP IUG conference in Anaheim, California. Mr.
Heidner is co~author of "The IMAGE/3000 Handbook" published by
WordWare, Seattle, Washington. He has written technical articles
which have been published in several magazines. Mr. Heidner has
been a member of the Association for Computing Machinery (ACM)
since 1982 and a member of the Institute for Electrical and
Electronic Engineers (IEEE) since 1974. He is also a member of the
IEEE Computer Society.

23

APPENDIX

A-1l. ASTAR MENU

Rev 1.0-85267 Copyright 1985 By the Boeing Company
ASTAR - Automated Software Tracking And Reporting

ASTAR MENU
01 SOFTWARE MOD. REQUEST 09
10
02 JOB INFO
03 JOB/FILE INFO 11
12
04 PROGRAMS
13
05 PROCEDURE INFO 14
06 PROCEDURE CALL XREF 15
07 PROCEDURE CALL TREE
16
08 DATA SET XREF 17
18
19
20

24

ERROR INFO
ERROR NUMBER XREF

QUERY REPORT INFO
QUERY REPORT-XREF

INCLUDE/XEQ/USE FILES
UDC COMMAND XREF
MODIFY MPE (ASTAR) KEYWORDS

ADPAN (SNAPSHOT ANALYZER)
APRINT

APRGINFO

TDP

DIRK

A-2. ASTAR SR'S

ASTAR SR'S
01 SR # 1 02 NAME AUDIT LIST
03 REVISION 04 TOPIC
05 USER H/A'S 06 REQUESTOR D. TOLER

07 ASSIGNED TO:TH 08 DATE SUBMITTED 08/27/85 09 SCOPE MINOR
10 PRIORITY HIGH 11 TEAM CHIEF DH 12 ASTAR DATE 09/05/85
13 PURPOSE
Get a list of equipment not found during an inventory, rather
than doing a scan by individual Propi#. (exception report)
14 ACTION
Use the TRS80 Model 100 to inventory then upload to the 3000
and run the exception from the 3000
15 COMMENTS
Program is partially complete on the TRS 80. A program will
have to be written for the 3000 to get the exception list.

16 COMP DATE 01/01/86 17 % COMP. 0 18 CLOSED DATE
19 MIN HRS 20.0 20 MAX HRS 60.0 21 PROB HRS 35.0 22 ACT. HRS .0
23 QC DATE 24 ALPHA DATE 25 BETA DATE

26 RELEASE DATE

A-3. ASTAR JOB INFO

JOB INFO
01 JOB SOURCE ANYUSER.REPORTS 02 JOBNAME ANYUSER
03 ACCOUNT TEIMS 04 GROUP REPORTS
05 FIRST REC. 1 06 LAST RECORD 39
07 REVISION 2.2 08 TYPE 09 INITIALS 10 ASTAR DATE 1/1/85

11 PURPOSE
A-4. JOB/FILE INFO

MODE:F ACTION:
JOB/FILE INFO

01 SOURCE QUERY . PUB. SYS
UDC COMMAND MPE COMMAND STREAM JOB R# DATE

Q RUN ANYUSER. REPORTS 26 02/25/86

Q RUN AUDITRPT.REPORTS 17 02/25/86
RUN CODELIST.REPORTS 17 02/26/86

Q RUN CODELIST.REPORTS 82 02/27/85
RUN COSTOTAL.REPORTS 13 02/25/86

Q RUN FULLMFG . REPORTS 12 02/29/84

Q RUN GPTEACQ.REPORTS 15 02/15/87

25

A-5. PROGRAM INFO

PROGRAM INFO

01 NAME ADPAN 02 SOURCE ADPAN.LIB
03 REVISION 1.1 04 ASTAR DATE 07/28/85
05 PURPOSE

Analyze snaphsot and program abort files.

06 COMMENTS
The document file for this program is called ADPAN.DOCUMNT.

MAXDATA DEFAULT 07 SEGMENTS 13 08 CODE SIZE 142012
09 COMP. JOB

A~6. PROCEDURE INFO

MODE:F ACTION:
PROCEDURE INFO

01 NAME SUBTRACTDATES 02 SOURCE ADDATES.SOURCE
03 PURPOSE
This routine takes two dates in YYMMDD format and gives
you the difference in number of days

04 INITIALS 05 TYPE SUB

06 LANGUAGE FORT 07 STATUS

08 REVISION 09 ASTAR DATE 08/26/85
10 FIRST REC. 166 11 LAST RECORD 222
12 LINES OF CODE 23 13 LOOP COUNT 0
14 # OF GOTO'S 2 15 # OF IF'S 3
16 EXPRESSIONS 19 17 # OF 1/0'S 0
18 CALLS 0 19 FORMATS 0
20 # OF EXITS 2 21 MIscC 0
22 COMMON BLOCKS 0

26

A-7. PROCEDURE CALL CROSSREF

MODE:F ACTION:
PROCEDURE CALL CROSSREF

01 PROCEDURE GETUSERINPUT

CALLED BY # REFS
GETCALLAB
GETCONTROL
GETDAYOFWEEK
GETFEATURES
GETFIELDNAME
GETFOCAL
GETHEADING
GETJOBNAME
GETMAIL

HH R

A~-8. ASTAR CALL TREE

ATREE REV 1.0 -85265 (C) 1985 The Boeing Co.
PROCEDURE NAME?ERRLOG

ATREE REV 1.0 -85265 (C) 1985 The Boeing Co.

LEVEL PROCEDURE NAME (Type: #refs) PURPOSE
1 ERRLOG (PROG: 0)
2 ARMERRORTRAPS (SUB : 1)
2 COMMITSUICIDE (SUB : 5)
2 RELEASEDATE (SUB : 1)
2 SETUPPROCINFO (SUB : 1)
| | I
|- called | |-- # of reference
procedure | to procedure

|=-- type of procedure
(PROG, SUB, FUNCtion)
MAXIMUM TABLE USED: 30 OF 1000 ENTRIES
PROCEDURE NAME?

27

A-9. DATA SET XREF

MODE:F ACTION:

01 NAME

USED IN
PDBGENRL.SOURCE
CODELIST.REPORTS
COSTOTAL.REPORTS
USERLIST.REPORTS
DELUSER.JOBS
COMPARE . BACJOBS
BECOIDWA.BACRPTS
BECOLIST.BACRPTS
BECORPT . BACRPTS

USER-DETL

DATA SET XREF

R#

A-10. INCLUDE FILE CROSSREF INFO

MODE:F ACTION:

01 INCLUDE

USED BY
ANYUSER.REPORTS
AUDITRPT.REPORTS
CODELIST.REPORTS
COSTOTAL.REPORTS
FULLMFG.REPORTS
GPTEACQ.REPORTS
INCALLAB.REPORTS
MAILABLl.REPORTS
MAILABLS.REPORTS
OPTAGS .REPORTS

INCLUDE FILE

LOOK

TYPE R#

XEQ 27
XEQ 18
XEQ 83
XEQ 14
XEQ 13
XEQ 16
XEQ 13
XEQ 20
XEQ 19
XEQ 13

28

DATE

08/07/85
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86

CROSSREF

DATE

02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86
02/25/86

INFO

A-11. UDC COMMAND CROSSREF

MODE:F ACTION:
UDC COMMAND CROSSREF

01 SOURCE TEM2.UDC
COMMAND USER R# DATE
*LOGON TEM TEIMS 1 03/01/86
DBUTIL TEM TEIMS 9 03/01/86
E TEM TEIMS 12 03/01/86
Q TEM TEIMS 15 03/01/86
SORT TEM TEIMS 18 03/01/86
HOLDAREA TEM TEIMS 21 03/01/86
OFFICE TEM TEIMS 24 03/01/86
TECH TEM TEIMS 27 03/01/86
LOOK TEM TEIMS 30 03/01/86
QA TEM TEIMS 33 03/01/86

A-12. APRINT
COMMAND?ERR=2.5

APRINT REV 1.0 -86015 (C) 1985 The Boeing Co.

SOURCE-FILE: READUSER.SOURCE / ERR=2.5

481 o]

482 C ALL'S WELL THAT ENDS WELL

483 o]

484 GOTO 2000

485 o]

486 o] RECORD THE MISSING MESSAGE TAG IN THE ERRLOG
487 o]

488 1000 CALL OPENERRLOG (IFILERR, IFOPT)

489 WRITE(18,610) USERNO,USERBUF (47)

490 610 FORMAT (X, " (PROG-ERR 2.5) USER#:",S," HAS A MESSAGE TAG#
491 *10X,"THE MESSAGE IS DOES NOT EXIST!")

492 CALL FCLOSE(IFILERR,1,0)

493 o]

494 C EXIT THIS PROCEDURE

495 o]

496 2000 RETURN

29

The Bug Stops Here!

Dennis Heidner
Boeing Aerospace Company

I. INTRODUCTION

The cost of software is rising, which is not a profound state-
ment to make when you consider that we have become accustomed to
the idea that software (and maintenance) will be 90% or more of the
total cost of a computer system. Software is labor intensive, so
as the cost of labor rises so does your software cost. But are you
getting your money's worth? Software, just 1like hardware, has a
life cycle: first there is the product conception, the investiga-
tion of the product and its market, then design, development,
product test and finally delivery. But is that it? No! Most
studies indicate that the largest cost of the software is AFTER the
product is delivered, in what is known as the maintenance phase.
(Ever wonder why the monthly maintenance costs for H-P software
products are so high?)

Software maintenance generally falls into one of several dif-
ferent categories; they include such areas as adaptive maintenance,
perfective maintenance, and simply fixing the outright program
bugs. Adaptive maintenance is generally modifications made to the
software product so that it remains functional; for instance, the
IRS every year spends considerable time adapting their software to
match the new tax laws passed by Congress. Perfective maintenance
means that the software is being modified to enhance its usability
or its position in the marketplace. Both of these types of main-
tenance generally provide a return on your time investment; however
the third category, fixing bugs, simply brings the product up to
what it should be, with no additional features. (Have you ever
heard of a sales person bragging that they fixed 57 bugs in their
product last year?)

Fortunately for most of us, less then 20% of our time is spent
fixing program bugs, but would it not be nicer if we spent less

than 5% of our time fixing bugs? {1] 1In many data-processing shops
that translates into one additional head! The purpose of this
paper is to present some ideas, which if incorporated into your
software, will help reduce the amount of time spent tracking down
nasty problems such as program aborts. The paper will cover three
areas, spotting the bug, trapping the bug and finally, killing the
bug!

Before we continue on, let me emphasize that the techniques I
advocate in this paper are not substitutes for structured design,
programming, code walk-throughs or testing! For those readers who
would 1like to learn more about structured design, programming or
testing, there 1is a list of references at the end of this paper.
(21 (3] (4]

II. SPOTTING THE BUG

The best time to spot bugs in programs is before the product is
out to the user (similiar to cleaning house before relatives
visit)! This can be accomplished by establishing a rigorous test
plan, which the software must pass before it's released. At the
HP3000 International Conference in Anaheim, Dan Coates and Michael
MccCaffrey from H-P talked about the software quality assurance
program that H-P has implemented. The quality assurance lab has
developed over 800 stream Jjobs which contain more than 10,000
separate tests! (5]

Test procedures

Locating bugs is, of course, the goal of product test for several
reasons; first the cost of fixing a bug once the product has been
released is much higher, and second while in product test you are
in a more controlled environment where you can generally locate and
duplicate a bug more easily. Notice the general tone of this para-
graph: we are looking for bugs, not trying to prove the program
works. Let me digress another step and talk about the population
of bugs. If you have a program that is one thousand lines long,

and you are very optimistic, you might hope that the program is 99%
free of bugs. What this means is that someplace in your program
there may still be ten lines containing bugs. If you were out to
prove the program was correct, the odds are that it will appear to
you that it is, even though there are still a few bugs there! It
is important to keep in mind Murphy's law of revelation, which is
"The hidden flaw never remains hidden."

The test procedure, really, is a program written in the language
of your application program. If your program is designed to con-
trol WIDGETS and use V/3000, then the native language of your test
procedures 1is WIDGETS with the V/3000 enhancement. Most univer-
sities and colleges offer classes in programming in COBOL, PASCAL,
FORTRAN, etc., but to my knowledge, there are no classes taught in
programming in WIDGETS! This means that when you write your test
procedure it will be a learning experience for your staff. Do not
expect to have test procedures which cover all the possible cases.
If you miss an important test case, this is really a bug in the
test plan! It 1is not uncommon for the first test procedures to
have as many or more bugs in them as the programs themselves!

V/3000 users have one additional problem on their hands: how to
test the programs and screens in an automated manner. The only
commercially available package of which I'm aware is called VTEST;
written by Wick Hill Associates, it is marketed by TYMLABS [6].

It doesn't work!

We must recognize that even if we have a good test plan, there
will be some bugs that are not caught. This brings up the next way
that bugs are discovered: the user calls up and says, "It does not
look right!". My initial response to such a general statment is
quite negative; however it is our job to turn around the general
reports and get the more detailed information we need. This is
done by asking more specific questions. For instance, when the
user reports that it does not work right, I will normally ask
several dquestions such as: Who are you? What were you doing when
it did not work right? What logon name had you used? Has this ever
happened before? 1Is this problem preventing you from working?

Since we do not want to always be grilling our users when they
believe they have spotted a bug, we must have a documented proce-
dure for capturing as much information as possible. My first at-
tempt at this was to beg the users to write down the information
off the screen, along with the sequence of steps they were going
through when the bug occurred. THIS FAILED HORRIBLY! What I found
out was that most users have the same aversion for writing that I
do, and when they do write, they are prone to transposing numbers.

On many occasions I spent hours trying to locate a bug in the wrong
procedure, because the stack marker which was written down was

incorrect. The programs at our site are menu-driven, with a fea-
ture which allows the experienced user to enter in one step the
commands to drop them several menus lower. In other words, if a

user wanted selection #1 from the current menu, followed by choice
#3 in the next 1level down, followed by #2 in the one below the
second 1level, the user could enter in: 1,3,2. This is very handy
for the wusers, but a problem for anybody trying to read the
scenario that the user wrote down, which looked something like:
1,3,2,4,1,0,3,M,00007635,AC,ME (1!}

There must be a better way! The good news is that there are two
programs in the contributed library [7], PSCREEN and SCOPY which
will copy the information from a screen to a file or the lineprint-

er. The bad news is that these programs only work with H-P ter-
minals and will operate improperly if the terminal was in block
mode. Where possible I set up a logon UDC so when a program

aborts, the screen is automatically copied.

Although screen copy routines are a great improvement over rely-
ing on handwritten information, they provide only external informa-
tion to the debugger. When the a bug occurs, what appears on the
screen is almost always an imcomplete picture. It would be ex-
tremely useful if, in addition to the screen copy, information
about the files open, and the values of the program variables could
also be saved. After spending a number of hours reading the MPE
intrinsic and DEBUG manuals looking for a solution, I found it!
The solution 1is the intrinsic called STACKDUMP. This intrinsic
will copy and format the program stack markers and the data area of
the stack (anybody who has had a program abort has seen these pesty
markers) . The person maintaining the program can then use the
screen copy, the stack dump, a copy of the program PMAP, a program-
mer's calculator and a complete listing of the program to locate
the bug accurately. Here is an example of a STACKDUMP output:

ek - STACK DISPLAY ek

§=000070 DL=177644 2=002266
Q=000074 P=000010 LCST= 000 STAT=U,1l,1,L,0,1,CCG X=000000

Q=000062 P=000002 LCST= 001 STAT=U,1,1,L,0,0,CCG X=000000
Q=000056 P=000004 LCST= 002 STAT=U,1l,1,L,0,0,CCG X=000000
Q=000050 P=000033 LCST= 003 STAT=U,1,1l],L,0,0,CCG X=000000

..DB.. OCTAL ASCII
00000 000000 000144 000000 177777 ee od L. ..
00004 000000 000000 000000 000000 ce ee ee e
00010 000000 000000 000000 140032 ce e se e
00014 000004 000020 040000 000000 ee .. 8. ..
00020 000066 000000 000020 000000 T .
00024 000007 172623 031540 000040 es oo 3
00030 073473 010010 120004 051501 Wi SA
00034 046520 046105 020123 052101 MP LE S TA
00040 041513 042125 046520 020040 CK DU MP
00044 020040 000000 000034 060304 ee oo Y.
00050 000034 040140 000000 000000 .. @'
00054 000005 060303 000006 000000 ee e e ue
00060 000003 060302 000004 177776 ee Yo il e
00064 000000 000106 000000 000000 .o «F .. .

*% AREA OUT OF BOUNDS *¥*

Once the individuals who will maintain the code have taught
themselves +to how to read program variable maps and program PMAPs,
this method of locating bugs is very effective. However it is
generally very difficult to teach! This was illustrated to me when
I began to explain to another individual in the company how the
program collects all this nice information for debugging. The
reponse was "How does it work over the phone?" Yes, over the
phone! The team that would maintain the software was located some
distance from the actual computer hardware. Thus all of our neat
stack dumps and screen copies were generally useless! i

After a little more careful thought, I realized that generally we
do not wish to see the whole stack dump, just selected portions, so
why not develope a little program which would read the stack dump
from the file, and display only what you asked for? This was the
birth of a program called ADPAN [8] (Application DumP ANalyzer).

Due to problems with the STACKDUMP intrinsic, I wrote my own
stack dump facility which I call SNAPSHOT. When SNAPSHOT is called
it creates a dump file, then copies an exact image of the data
stack to the file, along with information on the MPE files which

were open and in use at the time. This snapshot of the process is
then later analyzed by running ADPAN.

ADPAN has seven different screens of information which can be
displayed; they are: CODE, DUMP, FILES, FILE nn, FLUT, INFO, and
TRACE.

The TRACE screen is probably the most important of the screens.
This screen displays the procedure names, segment names, p-relative
address, Q address and the status for each of the markers in the
SNAPSHOT. This allows the user of ADPAN to locate the cause of a
program error quickly without needing to refer to a PMAP or have a
programmers calculator handy. The TRACE screen looks like:

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle WA

DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
Q L SEGMENT NAME PROCEDURE NAME P'REL STATUS
00174 ERRORHANDLER SNAPSHOT 00123 UM, XIN,TRAPS,L,CCG
00122 ERROR'HANDLER OVERFLOW 00004 UM,XIN,TRAPS,L,CCG
00114 ? SL %0173 P'REL = %011026 UM, XIN, TRAPS, L, CCL
00057 HELP'HELP O0PS 00005 UM, XIN,TRAPS,L,CCL
00050 ADPAN ' DEMO PROCEDUREB 00006 UM, XIN,TRAPS,L,CCL
00044 NEXT'BEST'THING PROCEDUREA 00002 UM,XIN, TRAPS,L,CCE
00040 ADPAN'DEMO SUPERPROGRAM 00035 UM,XIN,TRAPS,L,CCE
00033 S SMORGUE TERMINATE' PM,XIN,L,CCG

In this and other examples of screens from ADPAN, the entire line
of interest (normally highlighted on HP terminals) 1is shown
underlined.

The CODE screen displays the decompiled code around the PCAL in-
struction currently being examined by ADPAN, Since not all ter-
minals are capable of scrolling, ADPAN breaks the code down into
three regions, and simulates the scrolling programically. Here is
a code screen:

000004 031003 2. PCAL 3

000005 004000 .. DEL ,NOP

000006 031004 2. PCAL 4

000007 031400 3. EXIT O

000010 176031 .. LRA P+31 ,I,X (PB+000041)
000011 035002 :. ADDS 2 SUPERPROGRAM
000012 004000 .. DEL ,NOP

000013 021004 ", 1IDI 4

000014 033406 7. LLBL 6

000015 031007 2. PCAL F'ARITRAP

000016 000707 .. DZRO,DZRO

000017 021002 ". IDI 2

000020 172003 .. LRA P+3 ,I (PB+000023)
000021 031011 2. PCAL FMTINIT'

000022 140005 .. BR P+5 (PB+000027)
000023 000014 .. NOP ,DIVL

000024 044105 HE LOAD P+105 ,X (PB+000131)
000025 046114 LL LOAD P+114 ,I,X (PB+000141)
000026 047400 ©O. LOAD Q+ 0 ,I,X

000027 040403 A. LOAD P+3 (PB+000024)
000030 034403 9. LDPEN 3 (PB+000033)
000031 021005 ", LDI 5

<==PROC

The DUMP screen displays either an area around the current stack
marker or a specific region in memory. The user has a choice of
OCTAL, HEX, DECIMAL, CHARacter and NOCHARacter formats. The DUMP
screen is the default screen. (Any other screen can be requested
from the DUMP screen.) For example:

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle WA, JUL 14 1983
DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
Q%000057 P=%000006 X=%000000 STAT=%060703 S=%000071 DL=%177740

ADDR DATA
000036 000047 061305 000005 000000 000003 061304 000004 .'b......
000045 000000 000007 060705 000004 076400 000000 000004a...}
000054 000000 000006 060703 000007 000001 010550 111401a....
000063 000065 000152 111401 000065 140001 000012 135635 .5.j...5.
000072 000000 001000 000000 000000 000005 177766 000001 ...cccuvee
000101 000002 141001 000002 000000 177747 000016 000173 ...ccevee
000110 000052 000004 011027 062573 000035 000001 000115 .*....e{.
000117 000004 000005 062302 000006 177777 000011 110223d....

>D Q~-1;A fac!

>D Q-1 $060703

>D Q=1;L $060703 TRUE
>D Q-1;H 61C3

>D Q-1;1 25027

>D Q-1;D 1640169479

Several important items should be noted. The first is that ADPAN
will locate and highlight the current stack marker. In our example
above this was done by underscoring, Next is that the DUMP screen
actually has three separate windows: the header, the data area and
the command window. ADPAN uses cursor addressing (if possible) to
implement wraparound scrolling within the command window.

The FILES screen allows the user to identify the MPE files that
the program had open at the time of the SNAPSHOT. The information
displayed includes file number, file name, file options, access op-
tions, record size, current record pointer, the number of logical
records processed, and the file limit.

F# FILENAME FOPT%¥ AOPT% RECSIZE RECPT
3 FTNO6 000614 001401 -81 167
4 FTNO5 000244 001400 -80 167
5 D1921809.PUB.GOODIDEA 000000 000001 128 3

The FILE nn screen allows a user to 2ZO00OM in on a specific file
and look at virtually all attributes for the file. 1In this example
we will zoom in on file number five.

FILE NAME IS D1921809.PUB.GOODIDEA

FOPTIONS: STD,FEQ,CCTL,F, *FORMAL*, BINARY, NEW
AOPTIONS: WAITIO,BUF,DEF,NOLOCK,SREC,WRITE
RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS)

RECPTR: 3 RECLIMIT: 400
LOGCOUNT: 3 PHYSCOUNT: 1l
EOF AT: 3

FILE CODE: 0 # OF USER IABELS: O
FILE SYSTEM ERROR: 0

If the program being examined was written in FORTRAN, the user of
ADPAN can request that the FORTRAN LOGICAL UNIT TABLE be displayed;
this is the FLUT screen.

UNIT F# FILENAME FOPT%¥ AOPT%¥ RECSIZE RECPT
6 3 FTNO6 000614 001401 -81 167
5 4 FTNOS 000244 001400 -80 167

The INFO screen lets the user review the general FPREP
capabilities of the program. In addition the INFO screen displays
information on the way the program was segmented, data stack
utilization information, and any run-time INFO strings or parms.

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle WA, JUL 14 1983

DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
Q=%000057 P=%000005 X=%000000 STAT=%060703 S=%000071
PROGRAM CAPABILITIES=BA,IA SNAPSHOT ID: 1
STACK INFORMATION CODE SEGMENT INFO
DL-DB: 92 7.0% 5 SEGMENT(S)
DB-QI: 21 1.6% SMALLEST: 8
QI-Q: 26 2.0% LARGEST: 488
Q-S: 78 5.9% AVERAGE: 118
S-2: 1096 83.5% TOTAL WORDS: 592

MAXDATA: ??
MAX Z-DL: 1313

RUN TIME PARM VALUE: 0
INFO STRING: ** NO INFO STRING %%

As you can see, ADPAN provides much more information about the
process than the STACKDUMP intrinsic. A common (and very good)
practice at a number of HP sites I have visited is to assign an
error number to each important step in their programs. Then if
there is a problem encountered in that step the program prints out
the step number and stops. This is a very simple (but effective)
form of defensive programming. Examples of more sophisicated error
handling include most of AGADER's functions and the MPE operating
system itself. (System failures are MPE's way of preventing fur-
ther damage by continuing with corrupted system tables.) This
process can be enhanced by calling SNAPSHOT, passing it the error
number from the program. In this way we can capture the complete
environment prior to aborting the program, thus guaranteeing that
we always have enough information to properly diagnose the problem.

Databases and bugs

If your application is dependent on a database, then you have a
different set of problems. The cause for the wrong information on
the screen may be wrong information in the database. One common
mistake made by application designers is to assume that once the
data has been correctly entered into the database, it will always
remain semantically correct. What I mean by semantically correct
is that if the weight of a pallet may be between 0 and 30,000
pounds, then a value of -200 is semantically wrong! Another
problem can occur when a value from one dataset is used to chain
{or point) into another set, but the second entry is missing.
Generally when a program runs into such cases (if not anticipated)
the results are very unpredictable.

There are three techniques which can be used to locate bugs in
our databases before they appear later as bugs in the programs.
The first is to write a custom program which checks for and reports
semantic errors in the database. For example, database checking
programs should verify that items which are defined as dates in the
programs contain VALID dates in the database. Fields which contain
monetary values or other numeric quantities should be checked to
make sure that their range is LEGAL and REASONABLE. Fields which
are names of products, companies or individuals should be checked
for garbage cnaracters in the fields. Fields which contain phone
numbers, addresses or postal mail codes should be verified.
Finally if the applications chain from one dataset into another,
the test program should do the same. As you might have already
guessed, the error check program is a major system in itself. At
our site, I run this highly tuned program once a month; its work
takes more then six hours!

10

The second method to locate errors in the database involves
active checking for semantic errors by all the application
programs. The way this works is that after the user enters in the
account number or part number, the program validates all the infor-
mation related to that number BEFORE the information is displayed.
This method assures that before the user is aware that a problem
exists, the program has a chance to detect and correct it. This is
the method that I use on our main application for the computer.

The final method uses a checksum or hash total for each entry in
the database. The application programs, as a next-to-last step
before updating the database, generate a checksum for the entity in
question. This checksum value becomes an integral part of the
item. When the reporting programs read the entry at a later date,
they only need to recalculate the checksum value and compare to
make sure that they are the same. This technique is most useful
for detecting changes made in the database by unauthorized programs
or QUERY. Unfortunately if the error was made before the checksum
was dgenerated the first time then it will not be detected later.
An example of the use of a checksum to detect unauthorized changes
is in the file labels on the HP3000.

When I first started writing programs which accessed IMAGE
databases, I would generally check the status of the IMAGE intrin-
sics, then call DBEXPLAIN. After the first time a user wanted to
know what all the clutter about dataset so-and-so was, I made an
effort to remove the calls and replace them instead with a routine
which opens up an error log file, calls DBCALL [9] to get a
readable explanation of the problem, then calls DBERROR to obtain
the intrinsic name, database name and dataset name. A final call
is made to DBSTATUS [10], then all the available information is
written to the error log file. For example:

==>ZEP .ZESTY ,DATA LDEV:43 #S81 TUE, MAY 1, 1984 8:01P
Rev 2.00-84114 PROGRAM: TESTPROG P=%014.002514 Q=%015263
(PROG-ERR 2.29) Internal application or data base error

DBGET mode 5 on SPECIFICATION of PAZAZZ opened mode 1

END OF CHAIN

DBSTATUS: 15 $00452 1/ 405 %010076 %015032 5 %004601
SET: SPECIFICATION: ITEM-NAME: MODELCODE;

CHAR. EQUIV OF ITEM: O0O0O3FIDDLE

DEC. EQUIV OF ITEM: 12336 12339 17993 17476 19525 8224

Remember I said that I generally checked the status of IMAGE
calls? Not long after our application was up and running a number
of strange errors occured; apparently somebody had used QUERY to
delete several entries that the programs always expected to be
there. Since the program did not check the status of the previous

11

IMAGE call, it did not detect the problem. The end result was a
bug which migrated throughout the database and took several days to
track down! Always check the status to make sure it is acceptable!

Who did it?

If we have detected an error in the database, how do we locate
the cause of the problem? Hewlett-Packard has provided database
users with the ability to 1log transactions made to an IMAGE
database to either a disc file or a magnetic tape. This record can
then be replayed at a later date either to recover after a system
failure, or in the case of bugs, to audit the database. There are
currently two programs available which can be used to audit the
log, DBAUDIT and LOGLIST [11] [12] [13] [1l4].

III. TRAPPING THE BUG

Some times we do not have sufficient warning to set an error num-
ber and abort; for example a BOUNDS VIOLATION will generally abort
the program and print out the VERY UNFRIENDLY STACK MARKER in the
middle of your V/3000 form. In most cases using a screen copy
routine or having the users write the information down is ineffec-
tive since the stack marker is spread throughout the form. We
really want the computer to transfer to our error routines when an
abnormal condition occurs. There is a facility to do this; it is
called USER TRAPS.

Choosing the right trap

User traps are probably one of the least understood features of
the HP3000 computer and its operating system. This is unfortunate
when you consider the power they provide to detect and correct
program errors. Traps are provided for the following items: [15]

12

Type of error encountered

Trap intrinsic

Enable hardware arithmetic traps (ARITRAP)
Floating point divide by zero (XARITRAP)
Integer divide by zero (XARITRAP)
Floating point underflow (XARITRAP)
Floating point overflow (XARITRAP)
Integer overflow (XARITRAP)
Extended precision overflow (XARITRAP)
Extended precision underflow (XARITRAP)
Decimal overflow (XARITRAP)
Invalid ASCII digit (XARITRAP)
Invalid decimal digit (XARITRAP)
Invalid source word count (XARITRAP)
Invalid decimal operand length (XARITRAP)
Decimal divide by zero (XARITRAP)
Bad stack marker (XCODETRAP)
Bounds Violation (XCODETRAP)
CST Violation (XCODETRAP)
STT Violation (XCODETRAP)
Illegal address (XCODETRAP)
Non-responding module (XCODETRAP)
Privileged Mode intruction (XCODETRAP)
Unimplemented instruction (XCODETRAP)
Compiler library errors (55 total) (XLIBTRAP)
Invalid substring designator (XLIBTRAP)
Formatter errors (FORTRAN) (XLIBTRAP)
MPE intrinsic errors (XSYSTRAP)

Setting the traps

Except
calling the respective MPE intrinsic.
plabel

in FORTRAN programs the user traps must be enabled by
When enabling the trap, the

for the desired error-handling routine is checked to make

sure that it is valid, according to the following rules:

1.

If the call to enable the trap was made from a non-privileged
program, group SL or public SL, the trap handling routine
must also be non-privileged.

If the call to enable the trap was made from a privileged
program, group SL or public SL, then the trap handling
routine may be privileged or non-privileged, in either the
program, group SL or public SL.

13

3. If the call to enable the trap was made from an MPE SL
segment, then the error handling routine must reside in any
non-MPE SL segment.

Arithmetic errors

For example, the user may enable a trap routine for arithmetic
errors by calling XARITRAP as shown below.

Iv Iv I I
XARITRAP (mask,plabel,oldmask,oldplabel)

mask - Bit mask indicating which types of
arithmetic errors are to be trapped
(refer to the HP intrinsic manual [16]).
mask = 0 disables the traps.

plabel - External type label of the application's trap
procedure. plabel = 0 disables the traps.

oldmask - The previous bit mask for the arithmetic
traps.

oldplabel- The previous external type label of the
application's error procedure (0 if not
previously enabled).

Example of an SPL routine to enable all arithmetic traps:

PROCEDURE ARMTRAPS ;
BEGIN
INTRINSIC XARITRAP;
INTEGER OLDMASK, OLDPLABEL;
XARITRAP(%$37777, @ARITH' ERROR, OLDMASK, OLDPLABEL) ;
END;

14

EXAMPLE of an SPL routine to handle traps caused by arithmetic
errors:

PROCEDURE ARITH'ERROR;
BEGIN
ARRAY BUFF(0:40);
BYTE ARRAY STRING (*)=BUFF;
INTRINSIC PRINT,QUIT;

SNAPSHOT (0) ;
MOVE STRING := ("Arithmetic error! SNAPSHOT was taken!");
PRINT (BUFF,=-38,0);
QUIT(O) ;
<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

Users of FORTRAN have the ability to enable traps selectively by
using the "ON error condition CALL subroutine" statement [17].
unique procedures. The trap mechanism in FORTRAN very flexible; it
does not come free, though. 1In order to separate integer overflows
from divide by zero, the FORTRAN run-time library plays a few
games. Using the ON statement results in a named COMMON called
TRAPCOM' being established on your behalf. When an integer over-
flow occurs, the computer transfers control not directly to your
routine, but to a 1library routine. This 1library routine then
determines the type of hardware trap that was invoked and accesses
TRAPCOM' to obtain the plabel for your routine. Once the library
has a valid plabel, it transfers control to your error handling
routine by placing the plabel on the top of the stack and perform-
ing a PCAL 0.

A user may enable traps for integer overflows and integer divide
by zero by using the following FORTRAN stetements:

ON INTEGER OVERFLOW CALL OVERFLOW ROUTINE
ON INTEGER DIV O CALL DIVIDEO ROUTINE

HP sites that are heavy users of COBOL have a completely dif-
ferent story on their hands. COBOL deliberately calls a routine
called C'TRAP to enable SELECTED traps. This was done because when
a field is MOVEd in a COBOL program, the COBOL library handles any
type conversion that is necessary. The traps that C'TRAP enables
are:

Integer divide by 0

Integer overflow
Decimal overflow

15

Decimal divide by 0
Invalid Decimal digit
Invalid ASCII digit

One annoying feature of COBOL programs is that when an invalid
ASCII character 1is detected while moving a character field to a
numeric field, the COBOL run-time library attempts to "fixup" the
mistake (this was done to be compatible with users who read data
generated on punched cards, using overpunching). You may change
the traps that are enabled so the program will not attempt a fixup
but will instead abort, by using the following SPL routines:[18])

$control subprogram
begin
intrinsic quit,xaritrap,print;
procedure snapshot (trapnum) ;
integer trapnum;
option external;

procedure c'trap(trap'type); !This is a variation of the

value trap'type; !procedure found in the
integer trap'type:; | COMMUNICATOR 3000
begin {Version G.01.04 of MPE/V
integer xreg=x, ! (T-Delta-4 MIT)
deltap=g-2, !by Dennis Handly and
status=g-1, {John Pavone
scount=g-5, ! page 3-11 thru 3-19
S;

logical save'op;

integer array bufw(0:39):

byte array buf (*)=bufw;

define cvdb'opcode = ((save'op land %177617) = %20604)#;

save'op:=xreq;

if trap'type = %20 then { integer overflow
begin
move bufw:="segmentOOx ";
return 1;
end;
if trap'type = %400 then ! decimal overflow
begin
status. (4:2) :=1; ! set CARRY
tos:=if cvdb'opcode then
save'op., (11:2) + %31403 ! get SDEC
else save'op. (10:2)&LSL(1) + %31401; ! get SDEC

16

assemble(xeq 0); ! do stacked exit
end;

if trap'type = %2 then ! integer divide by zero
begin
status. (4:2):=1; ! set CARRY
return 1;
end;

if trap'type = %20000 then ! decimal divide by zero
begin
status. (4:2):=1; ! set CARRY
if scount=1 then return 4 else if < then return 2
else return 6;
end;

snapshot (trap'type);
move bufw := "Internal program error, snapshot was taken!";
print (bufw,-43,0);

quit(trap'type):

end;

17

procedure coboltrap:;
begin
integer dummy;

<<aborts on illegal decimal or ascii digit after snapshotting>>

xaritrap(%37777, @c'trap,dummy, dummy) ;
end;

end.

Bounds violations

Bounds violations, bad stack markers and invalid instructions may
be trapped by the UNDOCUMENTED user-callable procedure XCODETRAP.
This routine, which has been around for a number of years, is used
by DEBUG and, believe it or not, COBOL! The calling sequence for
this intrinsic is:

I Iv

XCODETRAP (newplabel,oldplabel)

newplabel - External type plabel of the application's trap
procedure. plabel = 0 will disable
the trap.

oldplabel - Previous external type plabel of the

application's trap procedure. If the trap was
disabled, 0 is returned.

NOTE: XCODETRAP is not in the intrinsic SPLINTR file,
therefore do not try to declare it as an intrinsic
or your programs will not compile.

FORTRAN users may enable this routine by using the following code:

EXTERNAL BOUNDS ROUTINE
CALL XCODETRAP (BOUNDS ROUTINE, IOLDPLABEL)

18

Currently users of other languages such as COBOL must use an SPL
routine to enable the trap, such as the following:

<< Since we can not declare XCODETRAP as an intrinsic
we must declare it here so the SPL compiler knows
that it exists. >>

PROCEDURE XCODETRAP (NEWLABEL,OLDLABEL) ;

VALUE NEWLABEL;

INTEGER NEWLABEL,OLDLABEL;

OPTION EXTERNAL;

PROCEDURE ARMTRAP;
BEGIN

INTEGER OLDMASK, OLDPLABEL;

XCODETRAP (@BOUNDSVIOLATION, OLDPLABEL) ;
END;

Example of the bounds violation trap routine:

PROCEDURE BOUNDSVIOLATION;
BEGIN
ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;

SNAPSHOT(0) ;
MOVE STRING := ("BOUNDS VIOLATION! SNAPSHOT was taken!");
PRINT (BUFF,-40,0);
QUIT(0) ;
<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>
END;

Run-time library errors

With the exception of SPL, all of the languages on the HP3000 use
run-time 1libraries. If an error is detected while in the library
the user has the option to request transfer to a trap handling
routine, rather than to abort the program. The calling sequence
for this routine is:

19

Iv I
XLIBTRAP (newplabel,oldplabel)

newplabel - External type plabel of the application's trap
procedure. plabel = 0 will disable
the trap.

oldplabel =~ Previous external type plabel
that was in effect. If the trap was
disabled, 0 is returned.

FORTRAN users may enable this trap by using the statements:

ON INTERNAL ERROR CALL LIBRARY ROUTINE
ON FORMAT ERROR CALL LIBRARY ROUTINE

Currently users of other languages such as COBOL must use an SPL
routine, such as the following, to enable the trap.

PROCEDURE ARMLIBTRAP;
BEGIN

INTRINSIC XLIBTRAP;

INTEGER OLDMASK, OLDPLABEL;

XLIBTRAP (@LIBRARYROUTINE, OLDPLABEL) ;
END;

An example of a library trap routine:

PROCEDURE LIBRARYROUTINE;

BEGIN
ARRAY BUFF(0:40);
BYTE ARRAY STRING (*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT (0) ¢
MOVE STRING := ("LIBRARY error! SNAPSHOT was taken!");
PRINT (BUFF,=-36,0);
QUIT(O);

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>

END;

MPE intrinsic errors

Almost any abnormal condition which occurs within the MPE intrin-
sics can be detected by using system traps (XSYSTRAP). The calling
sequence for this intrinsic is:

20

IV I
XSYSTRAP (newplabel,oldplabel)

newplabel - External type plabel of the application's trap
procedure. plabel = 0 will disable
the trap.

oldplabel - Previous external type plabel

that was in effect. If the trap was
disabled, 0 is returned.

FORTRAN users may enable this trap by using the statement:
ON SYSTEM ERROR CALL SYSTEM ROUTINE

Currently users of other languages such as COBOL must use an SPL
routine to enable the trap. An example of an SPL enabling routine
is:

PROCEDURE ARMSYSTRAP;
BEGIN

INTRINSIC XSYSTRAP;

INTEGER OLDMASK, OLDPLABEL;

XSYSTRAP (@SYSTEMROUTINE, OLDPLABEL) ;
END;

An example of system trap routine:

PROCEDURE SYSTEMROUTINE;

BEGIN
ARRAY BUFF(0:40);
BYTE ARRAY STRING (*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT (0) ;
MOVE STRING := ("SYSTEM error! SNAPSHOT was taken!"):;
PRINT (BUFF,-36,0);
QUIT(0) ;

<< WISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE END! >>

END;

A bug! catch it!

When an error occurs, the hardware transfers control to the cor-
rect trap, if it was enabled, otherwise the computer enters stan-
dard H-P abort routines. The user-written error handling routine
may be in the program, the group SL, or the public SL. User traps

21

are usable from all languages currently available for the HP3000;
however there are some special considerations for COBOL and RPG
programs {18].

The error handling routines can be written so that they either
attempt to correct the problem (COBOL does this with Invalid ASCII
digits) or abort the program. Regardless of which is done, be sure
that as much information as possible about the cause of the error
is written to a separate error log, so that the bug can be easily
corrected.

IV. KILLING THE BUG

Once the process information has been saved or printed, we can
abort the program (if desired) in a manner I call STRUCTURED
PROGRAM FAILURES. This means that we abort the program in a clear-
ly defined and orderly manner. For instance our abort routine
switches the terminal back to character mode, prints a standard
abort message on the user's terminal, displays the procedure name
in which the bug was detected, then prints an abort message on the
operator console (so special program recovery steps can be taken if
necessary). A message is sent to any user who is logged on to the
programming account, the JCW CIERROR is set to 976 (program abort),
JCW is set to FATAL, and finally the program calls QUIT to abort
the whole process tree (if any).

Q

OOQ

00000 '»

22

Here

is an example of a FORTRAN abort procedure, which illustrates
the above:

$CONTROL MAP,LOCATION,LABEL,STAT

leXeXeXeXeReReReRoRo o e ke Ko Ko Ko Ko Ko Ko Ko Koo Ko NoRo Ro o o RO N o)

o 000

F SUDDEN DEATH: The purpose of this routine is to provide

a means of a structured program failure
similiar to HP's SUDDEN DEATH intrinsic.

This routine DOES NOT halt the machine or
cause SF's, it does abort the process
tree!

There are two passed variables for this
routine, IERR and PROCEDURE.

The IERR contains the programmer-
assigned step number, which is included
in the SNAPSHOT and printed out when the
program aborts.

The value of PROCEDURE is a character
string which is printed on the user's
screen, and the operator console.

A corresponding JCW name is checked and
decremented. If the resulting JCW is
greater then zero, this routine will
return to the calling process.

In addition, this procedure checks for a
JCW called DEBUG; if it exists, and > 0,
the the procedure calls, the H-P
program debugger.
written by Dennis Heidner

SUBROUTINE F SUDDEN DEATH(IERR,PROCEDURE)
CHARACTER PROCEDURE*16,COMIMAGE*80,JCWNAME*16
INTEGER IERR,JCWVALUE

LOGICAL LTEXT(40),MUST STOP,LICWVALUE

EQUIVALENCE (LTEXT(1),COMIMAGE), (JCWVALUE, LTCWVALUE)
SYSTEM INTRINSIC COMMAND,PRINT, PUTJCW,FINDJCW,DEBUG
SYSTEM INTRINSIC STACKDUMP,QUITPROG

Take a picture of the data stack....

CALL SNAPSHOT (IERR)

DO 100 LENGTH OF STRING=1,16

IF(PROCEDURE[LENGTH OF STRING:1].EQ.";") GOTO 200

23

IF (PROCEDURE[LENGTH OF STRING:1].EQ." ") GOTO 200
100 CONTINUE
LENGTH OF STRING = 16

C CHECK THE JCW, WHICH CORRESPONDS TO THE PROCEDURE NAME.
200 IF(LENGTH OF STRING .GT. 1) GOTO 300

PROCEDURE = "“NULL"
LENGTH OF STRING = 5

C
300 JCWNAME = PROCEDURE[1l:LENGTH OF STRING - 1]
C
C DOES THE JCW EXIST?
C
MUST STOP = .TRUE.
CALL FINDJCW(JCWNAME, LJCWVALUE, ISTATUS)
IF(ISTATUS.NE.O) GOTO 500
c
C DECREMENT THE JCW VALUE
c
JCW VALUE = JCW VALUE - 1
CALL PUTJCW (JCWNAME, LJCWVALUE, ISTATUS)
IF(JCW VALUE .GT. 0) MUST STOP = .FALSE.
c
C DISPLAY THE ABORT MESSAGE
C
500 COMIMAGE="Program error in procedure: "

COMIMAGE[30:LENGTH OF STRING] =
& PROCEDURE[1:LENGTH OF STRING]
CALL PRINT (LTEXT,-50,%0)

C
C NOTIFY THE SYSTEM OPERATOR....
C
COMIMAGE="TELLOP Program aborting in procedure: "
COMIMAGE[40:LENGTH OF STRING] =
& PROCEDURE[1:LENGTH OF STRING]
COMIMAGE[40+LENGTH OF STRING+1:1]=%15C
CALL COMMAND(COMIMAGE, ICOMERR, IPARM)
C
C DO WE DROP INTO DEBUG FIRST?
C
JCWNAME="DEBUG"
CALL FINDJCW(JCWNAME, LJCWVALUE, ISTATUS)
IF((ISTATUS.NE.O) .OR. (JCWVALUE .LE. 0)) GOTO 1000
CALL DEBUG
C
C SET THE JCW'S CIERROR TO 976 AND JCW TO FATAL
C

24

1000 JCWNAME="CIERROR"
CALL PUTJCW(JCWNAME, ¥1720L, ISTATUS)

C
JCWNAME="JCW"
CALL PUTJCW(JCWNAME, $100001L, ISTATUS)
c
C SAY YOUR PRAYERS.....
C

IF (MUST STOP) CALL QUITPROG(IERR)
RETURN
END

After the bug has been detected or reported, make sure that you
use sound software maintenance practices and keep a log of the
bugs, the work-arounds, and the fixes. This will enable you to
provide better estimates of your future software mainenance costs,
estimate number of bugs remaining, provide an indispensible diary
for others who might later maintain the software and perhaps most
important, provide an experience base so that future software
products can be clean and free of similiar bugs.

V. EPITAPH

Although it is impossible to eliminate all bugs from software, it
is possible to design the software so that it is easy to maintain
and self-diagnosing. This paper has covered several techniques,

which if incorporated will help reduce the cost of software
maintenance.

wq?Lumb
ENTERTAIN

- ——
A Sx
/ t
AT /:"r“
. P e . s
AN HR}:.E\»I'«
Voo / @

25

VI. REFERENCES

[1] Martin, James and McClure, Carma, "Software Maintenance: The
Problem and Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983). p. 4.

[2] Martin, James and McClure, Carma, "Software Maintenance: The
Problem and Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983).

[3] Glass, Robert L. and Noiseux, Ronald A. "Software Maintenace
Guidebook" (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1979).

[4] Myers, Glenford J., "Software Reliability: Principles and
Practices” (New York, NY: John Wiley & Sons, Inc., 1977?)

[5]1 Coats, Dan and McCaffrey,Michael, “Customer Satisfaction
through Quality Software", Anaheim PROCEEDINGS, HPIUG 1984,
p. 7.

[6] VTEST available from: TYMLABS
211 East 7th Street
Austin, Texas 78701
(512) 478-0611

[7] Contributed Library Tape, Available from:
HP3000 International Users Group
(INTEREX)
2570 E1 Camino Real West
4th Floor
Mountain View, CA 94040

[8] ADPAN & SNAPHOT, Anaheim Swap Tape, Available from INTEREX.
Update on the CO CSL tape.

[9] Russell, Marguerite (ed.) "The IMAGE/3000 Handbook", (Se
(Seattle, WA: WORDWARE, 1984). p. 283.

[10] ibid, p. 283

[11] Green, Robert M., "Auditing with IMAGE Transaction Logging",
San Antonio PROCEEDINGS, HPIUG, 1982

[{12] Heidner, Dennis L., "Transaction Logging and Its Uses"
San Antonio PROCEEDINGS, HPIUG, 1982

26

[13]

(14]

[15]

[16)

[17]

[18]

Green, Robert M. and Heidner, Dennis L., "Transaction Logging
Tips", Montreal PROCEEDINGS, HPIUG 1983

DBAUDIT, Available from: Robelle Consulting Ltd.
8648 Armstrong Road, RR#6
Langley, B.C. V3A 4P9
Canada (604)-856-3838
LOGLIST, Available from: INTEREX (HPIUG)

Hewlett=Packard, "Intrinsics Reference Manual", Part number
30000-90010

ibid. p. 2-199.

Hewlett-Packard, "FORTRAN Reference Manual", Part
number: 30000-90040, p. 4-21 thru p. 4-26.

Hewlett-Packard, "Communicator 3000 Version G.0l1l.04
of MPE/V (T-Delta-4 MIT) pages 3-11 thru 3-19.

27

LESSONS ON USING HPSQL

Dr. John Hinrichsen
Kirke-Van Orsdel, Inc.
400 Locust
Des Moines, Iowa 50398

Relational database systems have been recognized as having
great potential benefits, and nearly every database vendor
is rushing a relational system to market. H.P.'s relational
database, HPSQL, has been available for a year, and the
first application systems using this new technology have
been completed.

This paper reports on the lessons learned while developing
an application using HPSOQL. Knowing these lessons will
hopefully allow you to avoid some pitfalls in your first use
of HPSQL. The most difficult lesson is that HPSQL requires
a different mental orientation. Since the data manipulation
language SQI. is nonprocedural, the programs have a decidedly
different and simpler structure. With SQL one specifies
what data is needed and not how to obtain it; HPSQL decides
the best procedure for accessing the data.

There has been considerable discussion about the performance
of relational database systems and whether they are truly
suitable for production environments. While there is
certainly a cost in resource usage for the many services
that HPSQL provides, many complaints of poor performance are
actually a result of improper use of the relational
technology. Several lessons concern techniques that must be
followed in order not to guarantee poor performance.

Introduction

Over the past several years a major shift of opinion has
taken place within data processing. The debate has shifted
from discussing the relative merits of the different data
base architectures (relational, network, and hierarchical)
to almost universal recognition that relational data base
systems offer irrefutable logical advantages. There is a
consensus that the relational characteristics are highly
desirable; in the computer magazines nearly all ads for
data base management systems (DBMS's) proclaim relational or
relational-like functions. There is even general agreement
that a relational DBMS should support the Structured OQuery
Language (SQL). The American National Standards Institute

Lessons on Using HPSQL 1

(ANSI) has recently published a standard for SQL which
largely confirms the de facto standard set by IBM's DB2. 1In
all, there has been a tremendous shift of opinion in favor
of relational DBMS's.

Although there is general agreement on what a relational
DBMS should be and on the desirability of such systems,
there has been a hesitancy to use relational DBMS's for
actual production applications. Questions about the perfor-
mance of existing implementations are by far the major
reason. A secondary consideration is the lack of referen-
tial integrity in most of the present relational implementa-
tions. Thus the popular attitude is: we want relational but
it is not yet technically feasible for high-volume produc-
tion applications. There is some dividing 1line which
partitions applications into those which can benefit from
the advantages of the relational technology and those, which
for efficiency considerations, should be implemented in
another technology.

Where then does HP's new relational DBMS fit into the
scheme? Does HPSQL satisfy the current requirements to be
relational, and what are its performance limits? What are
the strengths and weaknesses of HPSQL?

Before we begin, I will set forth my personal biases. I
believe that relational, SQL-based DBMS's will become as
fundamental in data processing in the future as COBOL is
today. There is really no other choice. Performance and
resource usage 1is always a concern during a shift to a
higher 1level of programming, but these concerns will lose
relevance as more powerful and relatively cheaper computers
become available. I feel that eventual use of a relational
DBMS is inevitable.

Advantages of Relational Systems

The fundamental objective of relational data base systems
was to provide a distinct separation between the logical and
physical aspects of data management. In 1970 when
relational concepts were being formulated, large application
systems had been implemented using the first generation of
(non-relational) DBMS's and it was becoming clear that a
major weakness of such technologies was an overly rigid data
structure. Program maintenance was complex and costly since
changes were propagated via the data structure to multiple
application programs.

Recently E.F. Codd presented twelve rules that a DBMS must
satisfy in order to be "fuliy relational" (Computerworld
October 14-21, 1985). The article was timely since the

Lessons on Using HPSQL 2

definition and properties of relational DBMS's had become
obscured, and also vendors had begqun to promote heavily the
report writers, application generators, etc., associated
with their products while deemphasizing data management
capabilities. Codd's twelve rules serve to reveal the
properties that any DBMS needs for good data management and
to indicate the inherent weaknesses of non-relational
DBMS's.

HPSQL's Adherence to the Standard

HPSQL conforms quite closely to the standard for SQL. Its
major failing is lack of support for subselect statements.
Most clauses using subselect statements can be rephrased in
an alternate way, but it would be very convenient to be able
to extract data and load a table in a single SQL statement:

INSERT INTO MIS_EMPLOYEES
SELECT *
FROM EMPLOYEES
WHERE EMPLOYEE_DEPT = 'MIS';

I have been informed that a later release of HPSQL may
support subselects.

Phone_Call Analysis System

Kirke-Van Orsdel, Inc. (KVI) is a third party insurance
administrator. Primarily, KVI administers and markets group
insurance to members of associations. The risk is carried
by one of the full-service insurance companies. Thus, KVI
has to satisfy multiple parties: the associations and their
members, the carrier insurance companies, and the state
regulatory commissions. Because of the many special cases
and rapid changes, KVI has a strong interest in the flexi-
bility of relational systems.

The insurance business is also data intensive, and KVI
currently has 5-gigabytes of disc storage. There is the on-
line activity of answering insureds' questions, issuing new
applications, and processing claims, as well as the heavy
batch processing of billings and remittances. Much of the
customer service is done by phone, and KVI handles approxi-
mately 6,000 calls per day. As a prototype application for
HPSQL, we decided to develop a Phone-Usage System.

A Telamon PBX Engine was purchased in order to feed call
detail data from the KVI ROLM phone system into the HP3000.
For each call this data includes the date, time, duration,
trunk, extension number, and number dialed. Optionally, an

Lessons on Using HPSQL 3

account number can be assigned to the call. The require-
ments for the phone-usage system were:

A) Contain the configuration of the PBX system
1) Trunks
2) Extensions
3) Accounts
4) Equipment inventory and location
5) Employees and departments
B) Compute management information
1) Exceptionally long or expensive calls
2) Summaries by trunks
3) Summaries by accounts
4) Summaries by area codes and geographic distribu-
tion
5) Summaries by extension
6) Summaries by department
C) Satisfy ad hoc requests

Thus the phone-usage system consists of three parts with
distinctly different characteristics. Part A) is relatively
static with a moderate number of entries, part B) entails
statistical information which requires extensive processing
to generate, and part C) is satisfying requests normally
from detail entries. As previously mentioned, the volume of
call detail records is approximately 6,000 per day. The
intent of the system was to provide timely on-line informa-
tion, but there must also be the capability to furnish
printed copies of the reports.

We feel that the diverse processing requirements made the
phone-usage system a good test for HPSQL. It is an
excellent test of the reporting capabilities of HPSQL and of
the batch inserting abilities. It is not a demanding test
of the on-line updating power of HPSQL.

Lessons on Using HPSQL 4

To start the development of the prototype application, I
normalized the data to obtain the following logical data
base design:

ACCOUNTS

v

TRUNKS CALLS AREAQODES

?

DEPTS — EXTENSIONS L’ EMP-EXTS EMPLOYEES

v $

PHONES < CUBICLES

Each rectangle represents a relational table in the data
base, and each arrow represents an external key referencing
another table. Phones is a table describing the physical
telephone devices, and Cubicles describes locations within
the company offices by floor, quadrant of the building, and
unique number. RAll arrows represent one-to-many type rela-
tionships. Notice that one employee may have several
extension numbers while other employees may share a single
extension number.

The maintenance of the tables describing the phone system
configuration is done using one form per table. One can
page through the table rows in either forward or backward
direction and can indicate which rows are to be added,
modified, or deleted. The paging is accomplished by means
of an SQL SELECT statement for the forward direction and
another SELECT statement for the backward direction. These
SELECT statements can derive the next or previous screen
based on the last or first row on the current screen. These
tables contain only a few hundred rows, and I had no
difficulty with this portion of the system.

Using SQL, each report is defined by a single SELECT state-
ment. The application program is responsible for deciding
which SELECT statement to use and setting the values of any
host variable, issuing the SELECT statement, fetching the
qualifying rows, and formating the output display. In the
present standard for SQL, the qualifying rows can be fetched
only once and in ascending order without reissuing the
SELECT command. This is adequate for paging forwards
through the report but not for paging backwards.

Lessons on Using HPSQL 5

In our application some reports require considerable
processing to generate so we do not want to do the
processing more than once. Thus, a relative record file was
used to store the report while the terminal operator was
paging through it. To generate the ten reports a COBOL
program was written containing these segments:

1) A list of SELECT statements defining the
different reports.

2) For each report, code to fetch the qualifying
rows, to format the report lines, and to write
them to the relative record file.

3) Generalized procedures for reading records from
the relative record file and displaying them as
lines in a screen format, and for paging and
scrolling forwards and backwards. I tested
storing the report lines in working storage
instead of a relative record file, but I could
detect no material difference in performance.
A major reduction of effort is realized by
using SQL, since all the file accesses,
matching of records, grouping, and sorting is
condensed into a single SQL SELECT.

Tuning for Performance

COBOL programs were easily written to load the call records
into the data base and generate reports as detailed above.
However, response time was several minutes for some of the
summary reports. A little thought revealed why this was the
case. If you consider the procedure necessary to generate a
summary report by trunk for a given day, for example, all
6,000 call entries for that date have to be retrieved,
sorted by trunk, summarized by trunk, and finally displayed.
The simple SELECT statement masks a great deal of
processing. It was decided that 20 seconds would be ade-
quate response time for the reports we were generating.
Clearly, if this goal were to be reached it would be
necessary to eliminate the on-line sorting of an entire
day's call records. It would be necessary to store daily
summarizations by account, by trunk, by area code, and by

Lessons on Using HPSQL 6

extension. Additional tables were added to the logical data
base design:

ACCOUNTS

ACCTSUMS

TRUNKS b TRNKSUMS 9> CALLS [AREASUMS AREACODES

EXTSUMS

DEPTS > EXTENSIONS —J EMP-EXTS e EMPLOYEES

PHONES < CUBICLES

Because of the data independence offered by the relational
system, these changes were easy to make: I entered the
CREATE TABLE statements and altered the SELECT statements in
the program to derive the reports from the summary tables
instead of the detail calls table.

The load program, which is run nightly to load the day's
data into the data base, was enhanced to first insert the
detail records into the Calls table and then to execute
SELECT statements to summarize the call data and insert the
results into the summary tables. Four indexes were placed
on the CALLS table based on extension, trunk, area code, and
account. After these changes the objective for on-line
response time was met, but the load procedures took several
hours. In addition, the operations staff complained that
the load program used an excessive amount of CPU cycles and
impacted other jobs running on the computer. Since KVI was
already very short of processing resources, this was
unacceptable.

There was no question that the load program had to do a 1lot
of work: insert the 6,000 call rows, maintain 4 indexes, and
then extract the 6,000 call rows 4 different times and
perform sorts and summarizations. In order to satisfy the

Lessons on Using HPSQL 7

system requirements for the phone-usage system all this work
needed to be done, but it needed to be done in a more
efficient way. There were three ways in which the 1load
procedures could be shortened:

1) The HPSQL Load utility can load a table in 1/3 the
time a COBOL program requires.

2) Sorting and summarizing call information can be
done much more efficiently using sequential files
rather than extracting all the data from the HPSQL
data base.

3) Instead of maintaining indexes on the Calls table
to locate the most expensive and longest calls, the
top 40 in each category per day could be stored
separately.

Seven short COBOL programs were written to implement these
loading techniques: one program which extracts trunk and
area code information out of the data base into working
storage and then computes the cost and state-called for each
call record, and six programs which perform internal sorts
on the reformatted call records and summarize them by
extension, trunk, area code, account, cost, and duration.
The output from each of the seven programs is inserted into
the data base by the HPSQL Load utility. With these new
techniques the load procedure takes about 20 minutes to run.

The final data base design contained two additional tables
to contain the longest and most expensive calls for each
day:

ACOOUNTS

DURSUMS ACCTSUMS COSTSUMS

TRUNKS |- TRNKSUMS CALLS AREASUMS AREAQODES

DEPTS EXTENSIONS EMP-EXTS EMPLOYEES

y :

PHONES < CUBICLES

Lessons on Using HPSQL 8

Querks of HPSQL

With SQL one specifies what data is sought, not how to
retrieve it. The HPSQL software is responsible for deter-
mining the optimal access route. Until I learned certain
tricks, I got unpredictable response times from queries. One
request would take seconds while a seemingly equivalent
request might take minutes. By examining the selected rows
it was evident that in one case an index was being used,
while in the other a sweep was being used to retrieve the
qualifying rows. A slightly different formulation of the
query was causing HPSQL to choose a different access route.

The HPSQL manuals give no guidance on rules one must follow
in order to have data accesses use indexes, since such rules
are subject to change. The most basic rule is that if you
wish to have an SQL command use an index on columns
(CoLl1l,COL2,COL3), you should qualify the index columns in
their order in the index. For example:

SELECT *
FROM TABLE
WHERE COLl1 = 47
AND COL2 = 'ABC'

AND COL3 >= 0;
I can give examples in which the order in which the columns
appear changes the access route.

Most of my problems where when one of the index columns was
defined to be of type DECIMAL(p,s). I found:
a) p must be odd,
b) the COBOL picture must be exactly S9(p-s)V9(s)
COMP"‘3 r
c) literal numbers must contain explicit decimal
points.
If any of these conditions is violated, the index will never
be used, and the request will be processed by doing a sweep.

Properly speaking, the rows of a table are unordered and one
cannot predict the order in which they will be retrieved by
a SELECT statement unless an ORDER BY clause is present. To
correctly use SQL one should use an ORDER BY clause whenever
rows are to be presented in a particular sequence. The
ORDER BY clause, however, can cause much overhead; all
qualifying rows are extracted and then sorted. For example,
if you wished to display the call detail records in time
sequence, the statement
SELECT *
FROM CALLS
WHERE CALL_DATE = 870601.
AND CALL_TIME >= 1000
ORDER BY CALL_TIME;

Lessons on Using HPSQL 9

would cause thousands of rows to be sorted (all entries for
calls made after 10 A.M. on the given day). The response
would be inadequate for on-line displays. However, if there
were an index on the columns (CALL_DATE, CALL_TIME), then
the statement
SELECT *
FROM CALLS
WHERE CALL_DATE = 870601.
AND CALL_TIME >= 1000;

would retrieve the rows using the index, and eliminate the
sort. This would be much more efficient if you only wished
to see a few entries., (A service request has been submitted
to HP to have HPSQL use indexes to satisfy ORDER BY clauses
where possible). Although the second approach is more
efficient, changing the indexes on the CALL table may alter
the order in which the lines are retrieved. In the Phone-
Usage System I elected to use the second approach and elimi-
nate sorts in the on-line programs.

HPSQL always reads indexes in ascending order, and has no
capability of defining descending indexes. Thus there is no
way to retrieve rows in a descending order without
performing a sort. For the displays of the most costly and
longest calls, which I wanted to appear in descending order,
I retrieved the rows from the data base in ascending order
and then reversed the order in formatting the terminal
screen.

.HPSQL inserts new rows at the end of files so as you add and
delete rows files tend to fill up. Periodically it is
necessary to unload and relcad the data base in order to
recover unused space. This is done by using the HPSQL
Unload and Load utilities to unload each table individually
and reload it. It takes approximately 90 minutes wall time
to reload 70,000 rows with 10 columns. I use this reorgani-
zation procedure to drop out-of-date data by selectively
unloading just the current data.

HESQL Lessons

What have I learned from developing this prototype system
using HPSQL? There are several dgeneral principles which may
help you on your first application.

1) Program coding is definitely simpler and more concise
with SQL. You need to code only high-level statements;
the HPSQL precompiler converts them to technical COBOL
CALL statements.

Lessons on Using HPSQL 10

2)

3)

4)

5)

6)

7)

8)

9)

You must check that HPSQL is making optimal use of the
available indexes. Slight differences in syntax can
cause the indexes not to be used. HPSQL will use the
indexes correctly if you observe a few rules.

Don't be misled by the conciseness of the SQL state-
ments. Consider the amount of processing that your
statements require and be reasonable. Do not expect
HPSQL to perform miracles.

For 1large applications it is not sufficient to 3just
normalize the data to design the data base. This is the
starting point, but consideration also needs to be given
to how the data will be used. In particular, management
information systems will generally require summarized
data to be stored.

HPSQL requires more system resources than does the use
of flat files. There is a cost for the benefits of
transaction logging, data independence, nonprocedural
statements, etc. Perhaps the current release of HPSQL
uses 5 to 10 times the CPU cycles compared to a tuned
system using flat files. This ratio should decrease
with future software releases and with the Spectrum
Series hardware.

The HPSQL Load utility is several times more efficient
than issuing INSERT commands from a COBOL program and
should be preferred for data loading.

The learning curve for SQL will be 1longer than you
expect. Basically, there are just the four commands;
INSERT, DELETE, UPDATE, AND SELECT; but you will be
changing from procedural to nonprocedural statements.
You will need to rethink your whole approach to program
design.

For your first HPSQL development it is important to
choose an application with moderate amounts of data and
reasonable processing requirements. This will allow you
to learn to use HPSQL without having to be overly
concerned with efficiency and resource usage.

HPSQL's potential for improving productivity is so great
that I consider its use to be inevitable (or perhaps the
use of some other relational data base). But at this
time one needs to be selective in the use of HPSQL as it
is not yet suitable for all applications. This situa-
tion will hopefully change since several other vendors
are now endorsing their relational DBMS's for general
production use.

Lessons on Using HPSQL 11

10) HPSQL 1is still an incomplete data base management in
that the full complement of integrated application
generators, report writers, and utility programs is not
yet available. But HPSQL provides a solid base for data
management and will serve as the foundation on which to
build these future enhancements.

Summary

HPSQL conforms closely to the standard for relational data
base management systems. With proper use, HPSQL can provide
large gains in productivity on small-to-medium size applica-
tions. Caution should be used in attempting to implement
large applications using HPSQL, since its performance is not
yet as high as that of traditional technologies. You should
begin introducing HPSQL into your company as it is the data
base technology of the future.

Lessons on Using HPSQL 12

NETWORK MANAGEMENT

Betty Hoo
Hewlett Packard
19420 Homestead Road
Cupertino, CA 95014

What is a Network Management system and why is it important?

To help you understand why Network Management is important, let’s imagine the nation’s
freeways and your city street system as a network. Instead of moving data between two
points in a network of computer systems, we are transporting ourselves between a start
point and a destination. You can probably picture what would happen if there were no
rules of the road, street lights, or signs. This particular network would be in a chaos.

Well, in the same manner that rules of the road and street lights are mechanisms to enforce
some degree of control into our freeway and street system, Network Management helps us
control a network of computer systems. 1 will discuss how the need for Network
Management evolved and what constitutes a Network Management system as proposed by
the International Standards Organization (ISO). With the above scenario in mind, let’s look
at some of the factors influencing the need for Network Management.

e AT & T Breakup

Since the breakup of the Bell System several years ago, you no longer have one
vendor who can be held responsible for the connection from point A to point
B. You need a way to manage connections that could involve multiple
vendors.

o Centralized Control of Distributed Systems

A historical analysis shows information processing has evolved through three
phases. The first phase, centralized computing, is characterized by the
concentration of all processing in one machine located at the company
Datacenter. The second phase, distributed computing, spread the processing
power out to the end users. The proliferation of personal computers over the
last several years is an extreme example of distributed computing. The third
phase, centralized control of distributed systems, is now in its infancy.
Network Management is a tool to realize the benefits of the first two
phases-~allow MIS to maintain centralized control and still give end users the
processing power of distributed systems.

¢ Network Growth

Networks are growing in size and complexity. As companies grow and the
price of computing continues to go down, more and more companies can afford
departmental computer systems. Networks are growing in complexity as end
users look beyond their own computer system and want to tap the resources
available across the network. More often than not, accessing this information
can cross multiple vendors’ equipment and multiple network link technologies,
such as X. 25, Ethernet, and 802.3 LANSs.

Network Management 1

o Networks as a Company Asset

Networks are regarded as company assets because information access is crucial
to making timely business decisions. It’s not enough now to know that the
information exists, but where to find it and how fast can the information be
accessed is also critical. There is a direct relationship between information
access, timely business decisions, and bottom line profits as information is used
as a competitive advantage.

¢ Network Management Saves Money

Lastly, Network Management saves money. Maximizing network uptime helps
protect a company’s investment, not only in hardware and software, but also in
personnel and the link between sites. There are tangible costs, such as the
dollar loss, that can be associated with network down time. More costly can be
intangible losses, such as lost business opportunities, due to a lack of or
incorrect information to run a business.

These are just some of the reasons why there is a need for Network Management. Let’s
look at how Network Management will address these needs.

Network Management’s objective is to provide medium to large network customers with
the tools to create and manage private data networks through all phases of the network
life cycle. I will be describing each of the specific "tools" that have been proposed by the
International Standards Organization (ISO) as necessary components of a Network
Management system. I will also describe the network life cycle and how these tools are
used in its various stages.

What makes up a Network Management system? A Network Management system, as
proposed by the International Standards Organization, consists of tool sets that can be
broken into five categories:

Fault Management: This tool set provides the capabilities to monitor, diagnose,
and correct network problems in real~time.

Performance Management: This tool set provides the capability to gather
performance statistics to be used for maintaining consistent network
performance levels.

Accounting Management: This tool set provides the capability for tracking
network usage. These tools are also used for offline problem tracking and

maintaining a network inventory.

Configuration Management: This tool set provides the capabilities for
centralized management and configuration of remote systems on the network.

Security Management: This tool set provides the capabilities to protect network
resources.

Let’s look at the tools available in each of these categories.

Network Management 2

Fault Management tools help ensure network availability through real-time isolation and
resolution of network problems. This tool set can be used to monitor the network and
detect, diagnose, and log network problems.

For example, a network error log can be used for troubleshooting. Problem detection tools
can include visual or audible operator alarm messages to indicate that an abnormal
network condition exists. These messages do not necessarily mean a network component
failed but the component is not in its regular operating state. The "failed" component may
be a system taken down for preventive maintenance. Path tracing is another diagnostic
tool used to isolate network problems. Path tracing can be used to follow the flow of data
from its source, through the network, and to its final destination. Through a combination
of these tools, network downtime and the disruption to a business’ normal operation can be
minimized.

Performance Management tools are used to gather statistics on factors that can influence
the performance level of a network. These statistics can be gathered over a user-defined
time period. Performance Management tools also allow real-time monitoring of
performance data. Performance data that can be monitored include response time and
resource utilization. Response time is an indication of the time for a command to travel
through the network, be processed, and a result returned to the user. Resource utilization
statistics can help identify throughput problems or bottlenecks in the network.

Real-time monitoring of network performance data allows operations personnel to take
immediate corrective action, such as rerouting data to balance the network load.
Performance data collected over time can be used for trend analysis and capacity planning.
Performance Management tools help avoid fluctuating network loads to maintain a
consistent level of network performance.

Accounting Management tools are used to track usage of network resources. Accounting
Management tools can also be used for offline problem tracking and for maintaining an
inventory of the network configuration. After defining a cost for the various components
of a network, network usage can then be tracked for departmental chargeback.

Departmental chargeback based on connect time is an example of an Accounting
Management tool that has been in existence for many years. Service bureaus typically
charge customers based on this method. In this case, the charge is assessed for the actual
time the customer is connected to a system on the network, whether or not the customer is
actively using the system.

Configuration Management tools help provide continuous network operation through
centralized control, configuration, and management of remote network resources. These
tools are also used to produce tables containing network configuration data, such as device
numbers, device types, and physical addresses. The ability to troubleshoot a remote system
on the network is one of the Configuration Management tools that can help provide for
continuous network operation.

A situation where Configuration Management tools would be useful is a large company
with branch locations distributed across the country and a Datacenter located at
headquarters. The Datacenter is typically a 24-hour shop with a full technical staff. The
technical staff may be able to resolve some remote problems on the network that might
otherwise have to wait. The branch office may not be staffed after business hours or may
not have the technical expertise. Configuration Management tools minimize the effect a
disruption has on the rest of the network.

Network Management 3

With the vast amount of data that is stored in a network of computer systems, network
level security is needed in addition to system level security to protect all the network’s
resources. Security Management tools are used to address this need.

One such Security Management tool controls network access. A password security system
can be used to restrict unauthorized users from the network. Password security systems
usually have several levels. Read, read/write, and execute capabilities are usually
associated with the user signon identifier.

Another Security Management tool defines who can control the network from a Network
Management standpoint. Staffing to manage a large network of computer systems
typically encompasses three job functions. Routine monitoring of the network and basic
troubleshooting are performed by a Network Operator. More complex troubleshooting and
configuration are performed by a Technical Specialist. Management and planning are
responsibilities of a Network Manager or Administrator. Network Management
capabilities are associated with these three job functions even though the actual titles will
vary by company. For example, it may be appropriate for an operator to be able to run
basic network diagnostics but not modify the security structure. Having Network
Management capability levels protects the network from the people running it!

Now that you have a basic understanding of the various tool sets that make up a Network
Management system, let’s take a look at when you would use these tools. The following
diagram depicts the various stages of a network life cycle.

NETWORK UFE CYCLE

REQUIREMENTS
DEFINITION

|

PLANNING

I

MPLEMENTATION CONFIGURATION MANAGEMENT
|
o‘;:‘;:_'l‘gn FwommMT “m@migemsm
SECURITY MANAGEMENT
|
“m” PERFORMANCE MANAGEMENT
onay @ ™87 Hewott-Packard Compary

Network Management 4

Regquirements Definition: In this first stage, the customer defines in
high~level terms what is to be accomplished with the network.

Planning: This stage involves detailing the requirements and mapping them
to the feature set of the networking software. Security and routing
structures are also decided.

Implementation: In this stage, the network is installed and tested.
Configuration Management tools are used here to configure remote systems
and to set up device, address, and routing tables.

Ongoing Operation: Most of the Network Management tool sets are used in
this stage. Fault Management tools are used to monitor the network and
diagnose problems. Accounting Management tools are used to track
network usage for departmental chargeback. Security Management tools
are used to protect network resources. Configuration Management tools,
though used primarily in the Implementation stage, are also used to a lesser
degree in daily operation.

Tuning and Growth: After the network is established, then data collected
with Performance Management tools can be used to tune the network.
Changes are incorporated by returning to the Implementation stage. Data
collected can also be analyzed for trends to predict future growth needs.
Continuing this process helps to optimize network performance to reflect
changing needs and network loads.

With an understanding of the categories of tool sets that make up a Network Management
system, let’s revisit the freeway "network" I used at the beginning of my presentation to
introduce you to the concept of Network Management. Thinking in terms of the Network
Management tools for Fault Management, Performance Management, Accounting
Management, Configuration Management, and Security Management, what kind of tools
fit into these categories to keep a freeway or city street network running smoothly?

Network Management 5

NETWORK MANAGEMENT

EXAMPLE: FREEWAY, CITY STREET SYSTEM

FAULT PERFORMANCE | ACCOUNTING | CONFIGURATION SECURITY

MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT

- Trattic Reporters| - Traffic - Highway Toll - Traffic Ughts |- Driver's License
Bottienecks Fees
- Highway Patrol - Freeway Signs |- License Classes
- Speed Limit - Bridge Toll

- Trouble - City Planning

Telephones

NMDR13% " 1986 Hewlott-Packard Company

Fault Management: Traffic reporters and trouble telephones are used for
problem detection and reporting. Law enforcement officers monitor the
freeways and help restore the flow of traffic after accidents or other
disruptions.

Performance Management: A traffic bottleneck can be regarded as a
statistic to indicate an unbalanced network load. Analysis showing
consistent bottlenecks at one location indicates some corrective measure
needs to be taken. Speed limits are also a tool to maintain a consistent level
of performance in this network. Though not always obeyed, (as Fault
Management tools can detect!) speed limits aid in maintaining a consistent
flow across the network.

Accounting Management: Usage of certain resources in this freeway
network can be tracked in several ways. Bridges and certain stretches of
the freeway network, for example, have toll fees to measure usage.

Traffic flowing smoothly with the aid of
synchronized traffic lights is usually taken for granted until one
malfunctions. Traffic lights are an example of remote resources that are
managed centrally. The statistics (bottlenecks) collected with the
Performance Management tools can be used in conjunction with
Configuration Management tools to balance the network load. A City
Planning Department, for example, can reconfigure this network by adding
an extra lane to alleviate a bottleneck.

Configuration Management:

Network Management 6

Security Management: Lastly, a driver’s license is a Security Management
tool to protect network resources, such as property and other drivers. A
driver’s license is similar to a password security system in restricting access
to this network to only those users that have passed a test. Classes of
driver’s licenses further restricts access to the network. From a Network
Management standpoint, law enforcement officers responsible for
monitoring this network have capability levels or jurisdictions. A highway
patrol officer has a different and wider jurisdiction than a city police
officer.

Other examples of networks that you’re already familiar with are the telephone system and
your bank’s automated teller machines. What Network Management tools can you think
of that manage these networks?

As you may have realized by now, the concept of Network Management and its various
categories of tool sets is not new when you look at examples from everyday life. The
International Standards Organization is in the process of formalizing the categories of tool
sets into a Network Management structure. Having a formal model will aid in defining
the future functionality of Network Management tools. Today, the field of Network
Management is in its infancy in the computer industry and Network Management still
means different things to different people. Many vendors offer Network Management
solutions that may, in light of the proposed ISO standards, only address pieces of the
Network Management model.

Development of Network Management standards will not only help define future
functionality but aid in categorizing existing tools into a formal structure recognized by
the computer industry. As the industry moves towards acceptance of Network
Management standards, vendors will have the opportunity to integrate their proprietary
offerings. Network technology will no longer be a hindrance to information access as
Network Management standards will encourage a true multivendor environment. Vendors
will have a new benefit to sell, connectivity, but the ultimate winner? You, the user.

Network Management 7

ABSTIRACT

Building Expert System Shells

Ross Hopmans, Brant Computer Services Ltd.

Now that the MProlog language and development environment has been delivered to the HP 3000,
the power of Artificial Intelligence (Al) applications development is availableto Hewlett-Packard’s
commercial users. This opens the doors to standalone Al applications, knowledge systems interfaced
to commercial applications and database, and for the development of task-specific expert system
shells.

The focus of this paper is on the development of expert system shells. We examine how artificial
intelligence fits into the needs of the business community, look at what expert systems are, and
explore the requirements for developing a successful, task-specific expert system shell.

Shells must provide the end-user with more than just the ability to populate the knowledge base
with facts and rules. They must provide a strong user interface, a comprehensive explanation facility
and versatility within a very specific framework. We examine the meaning of each of these points and
look at ways in which they can be implemented.

ABSTIRACT

Hybrid Systems - Combining Third, Fourth,
Fifth Generation Languages: What Next?

Ross Hopmans, Brant Computer Services Ltd.

Most systems developed today are undertaken using the technology with which the programming
team is most familiar. In the short term, this may mean that there is no learning curve to slow down the
coding effort; but the reality is that major advances in software technology are being virtually ignored.
Every programming language has its strengths and weaknesses. No language is ideal in every
situation. Yet a great deal of programming effort goes into forcing languages to be used in
applications for which they were never designed. The language for programmers today is to pick the
best tool for each individual task - to build hybrid systems to take best advantage of the strengths of
third, fourth and fifth generation software technology.

This paper explores the issues involved in building hybrid systems. We examine the types of
problems to be solved by business computers such as the HP 3000 and look at how hybrid systems
can produce more effective and efficient solutions with less programming effort.

The Power of Graphics in Your Business

Lee Horton
Hewlett-Packard
Personal Software Divison
3410 Central Expressway
Santa Clara, California, 95051

Summary

This paper discusses how graphics help communicate messages by
appealing to both verbal and nonverbal thinking. Based on this
characterization of thinking, you can wuse graphics in your
presentations and reports to achieve six goals. Each of the goals
will be discussed, with graphic examples of how to achieve them.

The paper then discusses the Hewlett-Packard Graphics Gallery, a
PC based business graphics package designed to help you acheive

the six goals. Charting Gallery, Drawing Gallery, and Executive
MemoMaker are described.

Finally, the paper discusses how Graphics Gallery fits into the
Personal Productivity Center, including integration between
Graphics Gallery and HP 3000 Graphics products. The benefits of
graphics on the PC vs the HP 3000 are discussed.

Reaching Verbal and Nonverbal Thinking

The way people think can be characterized in two ways: verbal and
nonverbal. The verbal side of thinking uses words to name and
define. It counts, keeps track of time, uses reasons and facts to
draw conclusions, and has a very step by step approach. Nonverbal
thinking manipulates objects, ideas, and concepts, without using
words. It puts parts together to make "wholes", perceives
patterns, trends and visual images, has no sense of time, and
makes decisions based on insight, feelings, and intuition.

When you communicate with others, you will be most effective using
the appropriate technique for your message. Messages that require
more nonverbal thinking lend themselves to charts, graphs, and

pictures. These are effective for showing trends, patterns, and
interrelationships. They help the listener to draw conclusions
from the whole of your data. If you want your audience to

remember specific numbers or draw conclusions by stepping through
details, you are appealing to verbal thinking. In this case, use
a computer printout; develop a precise table for a report; or for
a presentation, create a simple table or text slide that can be
used as a visual aid while you explain details.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
1

Six Appropriate Uses for Presentation Graphics

In most cases graphics can help you reach both verbal and
nonverbal thinking. Combine spoken or written words with graphics
for emphasis, and more detail oriented media for supporting data.

In light of the way people receive your messages, use graphics in
your presentations to accomplish these six goals:

Emphasize and clarify your main point

Create interest

Improve recall

Emphasize relationships and trends

Save time in analyzing data

Make translation easier since most pictures are universally
understood

Consider these illustrations of how graphics achieve each of the
six goals.

1. Emphasize and clarify your main point

Suppose your main point is, "A bird in the hand is worth two in
the bush".

You might emphasize it as shown below:

Interex - Las Vegas 1987
The Power of Graphics in Your Business
2

Or simply display your main point in writing as you say it.

A bird in the hand
is worth
two in the bush.

This also illustrates two additional uses for graphics:

(o] (o]

To create interest.

‘@ G

and

To improve recall.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
3

4. and 5. Graphics are useful for emphasizing relationships and
trends, and for saving time in analyzing data. For example,
suppose your spreadsheet contains the data shown below:

Beans Counted

1986 1987
January 20,164 19,750
February 18,937 20,375
March 19,251 21,023
Aprif 25,387 29,758
May 28,438 27,841
June 26,851 28,912

It takes several seconds to see what the chart below shows:

Beans Counted: 1986, 1987
1966 1987
30000
—

25000/
20000} el
15000 . . - . .

January February March April May June

As you can see, there is a two year trend where the bean count
increases in the spring.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
4

6. Craphics make translation of ideas easier since most pilctures
are universally understood. Here is one example.

Meeting the Six Needs: The Graphics Gallery

In support of graphics as an important part of your presentations
and documents, Hewlett-Packard has developed "The Graphics
Gallery". Graphics Gallery features three products:

Charting Gallery
Drawing Gallery
Executive MemoMaker

This document, including all of the graphics, was created by The
Graphics Gallery.

Graphics Gallery provides an easy way to create and edit business
graphics that accomplish the six goals. The main philosophy is to
provide people in business with professional quality presentation
graphics on their PCs.

Charting Gallery

The "Beans Counted" data became a chart using Charting Gallery.
Charting Gallery is "data driven" - it creates charts from tables
of numbers. You can type the numbers into Charting Gallery, or
import them in DIF or ASCII format. This allows you to create
charts based on data from almost any applications without retyping
it. You can also pull graphs directly from 1-2-3 worksheets, then
enhance them in Charting Gallery. Charting Gallery features
scattergrams, ple, bar, and line charts. Its charts have been
structured by graphic artists using rules for good design, giving
good looking results. It has a powerful editor for modifying text
fonts, size, and welight, line styles, colors, textures,
annotations, etc.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
5

Charting Gallery works as shown below.

1. Type data into the data screen:

Charting Callery Data Lino Charts

Enter X Axis labels, data ranges and legend labels.

26851

< To Row
Labels Number

You can also load the data in DIF or ASCII formats, or pull a
chart from a 1-2-3 or Symphony worksheet.

(Note that the above picture was not created by the Graphics
Gallery, and was included in this document by cutting and
pasting.)

2. Switch to the "Edit and Draw" screen to view your chart,
generated automatically from you data. Use the menu to edit and
enhance your chart.

At this point you can plot your chart, or save it in .GAL format
to enhance in Drawing Gallery graphics or integrage into an
Executive MemoMaker document.

You can also try the same chart data as another chart type,
or oriented a new way.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
6

Data driven charts and graphs such as those created by Charting
Gallery can help accomplish all of the six goals, but they are
particularly useful for communicating what numbers mean, e.g., to
emphasize relationships and trends, and to save time in analyzing
data,

Remember that the other four goals are emphasis and clarifying,
creating interest, improving recall, and facilitating easier
translation to other languages. These are where object oriented
graphics become useful. Hewlett-Packard has created "Drawing
Gallery" to answer the need for such a graphics application on the
PC.

Drawing Gallery

Drawing Gallery can 1load Charting Gallery charts for more
free-form editing, or you can create new graphics from scratch.
It was designed to create organization charts, text charts, flow
diagrams, and illustrations. It comes with a "portfolio" of
pictures you can include in your drawings. Here are some examples
of the portfolio pictures:

=
@ Drawing Gallery Portfolios

ST A

)

\Eézfgf ’ LR +~ €Eé£)

Additional portfolios can be purchased, totalling over 1,800
symbols and illustrations. These include HP Draw Figures, Office
Activities, business Management, and Chemical / Petrochemical -
thousands of pictures in all.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
7

Drawing Gallery allows more extensive editing than Charting
CAllery. It helps you create professional quality pictures by
providing a grid as a guide and electronic templates (such as
circles, squares, etc.) as building blocks. A wide variety of
character and line styles, colors, and sizes are also included.
Pull-down menus and your mouse let you produce your drawing
quickly and easily.

When you run Drawing Gallery, you first see a menu of options
surrounding a screen. The screen contains nothing but a grid.
You can choose to load a Charting Gallery chart or an old Drawing
Gallery picture, or simply begin drawing. To either edit a chart
or old picture, or to create a new picture, add and manipulate
graphics by selecting operations from the menus using the mouse or
keyboard, then read the screen for further directions. Add
pictures from the "electronics templates™ by "selecting" them,
then "dragging" them into place.

Here is an example of a Charting Gallery chart, on the next page
the same chart has been enhanced in Drawing Gallery.

Cycle Sales
June 15 - 22, 1987

One Bpesds 18.4%
20

Jim's Cycle Shop

Interex - Las Vegas 1987
The Power of Graphics in Your Business
8

Cycle Sales

June 15 - 22, 1987

Three Speeds 16.0%
=

Jim's Cycle Shop

Executive MemoMaker

Finally, you can include your Charting Gallery charts and Drawing
Gallery pictures in an Executive MemoMaker document. This paper
was created using Executive MemoMaker, Charting, and Drawing
Gallery. Executive MemoMaker is a word processor designed to be
intuitive and provide the most common word processing functions.
These include merged text and Gallery graphics, find and replace,
a spell checker, an 85,000 word dictionary, type styles such as
bold and underline, and more. To use Executive MemoMaker, just
follow the softkey based menu. Most people are productive with
Executive MemoMaker within minutes.

So, to review, HP has addressed the six uses for graphics in
business by providing Charting Gallery to emphasize relationships
and trends and enable faster ways to analyze data. Drawing
Gallery helps emphasize and clarify points, create interest,
improve audience recall, and help communicate to an audience who
speaks varied languages. Finally, Executive MemoMaker allows you
to produce reports including graphics.

The pages appended to this paper show copies of Graphics Gallery
output, plotted to a Hewlett-Packard plotter.

Graphics Gallery and the Personal Productivity Center

Graphics Gallery gives you even more power when you use it with
the many other computing tools that comprise your Personal
Productivity Center.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
9

On the personal computer level, you can pull data and graphics
from the other applications. These include databases, such as
Executive Card Manager or R:base 5000, spreadsheets such as 1-2-3
and Symphony, and word processors via ASCII, DIF, and Lotus
workgsheet file formats. Therefore, you can use your local database
to store large amounts of data, manipulate that data wusing Lotus
1-2-3 or Symphony, then use Gallery to display the results.
Finally, put your Gallery pictures in your Executive MemoMaker
report. This diagram shows how it all works together.

Vectra Office Integration

Drawixg Charting

Gnllery‘i_aa er;
‘////// {\\<f:T

Execulive

MemoMaker ascy Card Manager
oF

ASCE OF

AdvanceWrite Lotus 1~2-3

All of Hewlett-Packard’s strategic PC applications, including
Graphics Gallery, are networkable, so you can run them over the HP
OfficeShare mnetworks. This way you can share files, printers,
plotters, and disc space with other members of you workgroup.

On the HP3000 level, you can use AdvanceLlink or AdvanceMail to
move Yyour graphics from your PC to the HP3000, then mail them to
other people using HP DeskManager.

Hewlett-Packard has also offered a set of business graphics
packages on the HP3000, called HP3000 Graphics. These include
HPChart, HPDraw, HPMap, and others. Figures created by these
applications can be included in documents created by such HP3000
applications as TDP and HP Word, both document processors.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
10

HP Graphics Curator/3000

Graphics Gallery pictures and HP 3000 Graphics pictures can be
translated wusing HP Graphics Curator/3000. HP Graphics
Curator/3000 is a graphics converter that runs on the HP 3000. It
converts Charting Gallery or Drawing Gallery .GAL files to HP 3000
Graphics FIG file format, and HP 3000 Graphics FIG or DRAW files
to GAL format. You can download "curated" HP 3000 Graphics files
to your PC, then put them anywhere you would put a Gallery file.
You can also upload Gallery files to the HP 3000, "curate" them,
and put them anywhere HP3000 graphics files can go.

HP Graphics Curator/3000 also works with HPDeskManager, so that
people who receive your GAL pictures can read them while in
HPDeskManager. As a result, they will not need to download GAL
files to their PCs to view them with Drawing Gallery.

You can run HP Graphics Curator/3000 several ways:
o Interactively, using it’'s menu driven interface
o From one command line at the MPE prompt

o Programmatically, from MPE UDC’s, in job streams, with Advance
Mail, and with Advancelink command files.

The easiest way 1is by following the menu-driven interface
instructions. Use more automated methods if you have a large
number of pictures to convert. Using an AdvanceLink command file,
you can also move pictures to and from your PC.

By now you are probably wondering why there are two sets of

graphics applications, and why this paper deals mostly with
Graphics Gallery.

Why PC Based Graphics?

The HP3000 Graphics applications were first released in 1980. At
that time, people did not have easy access to PCs.

Since then PCs have become easier to get and more commonly used.
As a result, Hewlett-Packard examined the differences between
running business graphics applications on minicomputers and on
PCs. They found that PCs provided a significant increase in
performance. PC graphics are faster because they can be generated
more quickly with the help of the dedicated microprocessor.
Because of the large amount of math calculations required for
graphics computing, a dedicated CPU significantly improves
performance over one which must frequently switch between several

Interex - Las Vegas 1987
The Power of Graphics in Your Business
11

tasks. Since graphics editing requires frequent interaction
between the person and the computer, the computer must be able to
respond quickly to input. This is also easier with a dedicated
PC, because terminals generally work in "block mode", periodically
sending blocks of user input to the host computer and receiving
blocks of response information. In contrast, PCs accept and
respond to one increment of user input at a time.

Graphics performance is also more consistant on the PC than on the
minicomputer. The difference is caused by varying number of users
sharing a minicomputer at any given time.

Because of performance benefits, plus the fact that PCs became
available to people in business, Hewlett-Packard decided to create
the Graphics Gallery for the PC. It’s PC base allows it to
include features that would have been impossible to implement on a
multi-user system, especially it’s highly interactive user
interface. Benchmarks have shown that on-screen performance of
Drawing Gallery is at least eight times faster than HP Draw on an
empty HP 3000 Series 68. Of course, some of these improvements
should be attributed to the fact that Gallery uses new graphics
software technology.

Conclusion

Many PC and minicomputer business graphics applications allow you
to accomplish the six goals of presentation graphics: emphasis,
creating interest, improving recall, showing releationships and
trends, data analysis, and enabling translation. However, The
Graphics Gallery offers a rich feature set that makes creating
professional and effective graphics very easy. It works well with
applications in the Hewlett-Packard Personal Productivity Center,
and most other popular PC applications. Using the capabilities of
the PC, it offers superior performance to minicomputer graphics.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
12

References and Acknowledgements

Dieli, Paula, "HP Combines the Power of The Graphics Gallery and
HP 3000 Based Graphics.", Hewlett-Packard Computer News (now
Information Systems and Manufacturing News), March 1, 1986

Matkowski, Betty S., Steps to Effective Business Graphics,
Hewlett-Packard Company, San Diego, CA, 1983

Thanks to Brenda Buchwitz, Claudia Carpenter, Paula Dieli, Joe-
Malin, and Martha Seaver for their assistance.

Trademarks

1-2-3 (TM), Symphony (TM), and Lotus (TM) are trademarks of Lotus
Development Corporation.

R:base 5000 (TM) is a trademark of MicroRim, Inc.

Lee Horton

Lee Horton has worked in the personal computer industry for four
years, first in software development, then in technical marketing.

She speclalizes 1in spreadsheets, graphics, and Hewlett-Packard
System Engineer training.

Interex - Las Vegas 1987
The Power of Graphics in Your Business
13

]
\ Graphics Gallery Advantages

I Professional quality output

I Complete range of output
Full color plots and slides
Excellent printed graphics
35 mm output

I Integration
Charting and drawing
Merged text and graphics
Lotus 1-2-3 spreadsheets

I Easy to use

This is an untouched reproduction of a plot created with HP's Drawing
Gallery software and an HP 7550A plotter.

Instrument Family Used with MIDI

Keyboard 60.0%
\

Trumpets Are Beginning
To Represent a Larger
Percentage of MIDI

Other 7.0%

Percussion 13.0%

f Trumpet 20.0% Created Using HP's Graphics mm__mg

This is an untouched reproduction of a plot created with HP's Charting
Gallery and Drawing Gallery software, and an HP 7550A plotter.

- 7 4 Kimball Industries

A N Aerospace Division Robert Kimball
President

David Jenkins Susan Grant Jane Sanders
Vice President Vice President Vice President

L | |

Jim Mead Ann Davis Sam Barnes

Sandy Frost

Resa Mann John Rollins
Associate Associate

Associate Associate Associate Associate

This is an untouched reproduction of a plot created with HP's Drawing
Gallery software and an HP 7550A plotter.

K
i i -
Kimball Industries

New Production Process

This is an untouched reproduction of a plot created with HP's Drawing
Gallery software and an HP 7550A plotter.

Gray Scale by
Graphics Gallery

And Why It's
Important:

f Provides Look of Color
on B&W Devices

/ Objects Can be Overiapped
For "Shadow” effect

/ Maximizes Graphics
Capabilities of Laserdet

Created Using HP's Drawing Gallery Software / Ensures Graphic Elements
and LaserJet Plus Printer at 150 DPI Match Legends

MEMO

From: Ames Cornish Date: April 9, 1986

To: Neil Friedman Subject: Presentation Graphics
Dave Obershaw

As we discussed yesterday, Hewlett-Packard can provide us with everything we
need for professional presentation and reporting graphics. To best demonstrate
this capability, I have included below the graphic I used last week in our
program review.

----- Kimball INdUStries -~ - -~ - oo
Customer Sales . : : . :

As you can see, this is the kind of outstanding presentation graphics that we
need here at Kimball. There is no doubt that these types of graphics will help
us all be much more effective in communicating our thoughts and ideas.

This document was created using Hewlett-Packard’s Graphics Gallery and
Executive MemoMaker software, and printed on a LaserJet printer.

Sincerely,

S i

Ames Cornish

s

THE

QO AN

(GRAPH ICSGALLERY

R E V

E W

Hewlett—-Packard’'s Graphics Gallery Now Compatible
With Industry Leading Desktop Publishing Program

The Graphics Gallery from
Hewlett-Packard is a versatile
graphics software package that
produces truly professional-
quality business charts and pic-
tures. It provides excellent re-
sults on paper, overhead trans-
parencies and 35mm slides. The
Graphics Gallery can also be
used for Desktop Publishing.

Professional Results

Desktop Publishing lets you
quickly create professional-
looking proposals, newsletters,
brochures and other documents.
And for truly powerful and
exciting publishing, you need
professional-quality pictures
like those created by Graphics
Gallery. Best of all, you don’t
need to be an artist to make great
looking pictures with Gallery.

Works With PageMaker

Now the Graphics Gallery works
with PageMaker from Aldus,
Using PageMaker, Graphics Gal-
lery and a word processor, you
can produce professional looking
documents. The picture below
(created with Graphics Gallery)
illustrates how the final document
is assembled.

Create text with Executive
MemoMaker or AdvanceWrite
from HP, or use any of several
popular word processors. Create
a graph or chart with Graphics
Gallery and save it on disc as a
TIFF file. Then use PageMaker to
place the text and Gallery graph-
ics into your flyer, newsletter or
proposal.

Here's How
it Works:

@ Create prhsws, charts wih
Graghics Gadery

* Save your pictue a8
a TFF tag

This fiyer was

The

usliny

Scanning Gallery--
New From HP!!

Now scanned images can be in-
corporated into your desktop-
published documents! With the
new HP Scanning Gallery soft-
ware and ScanJet desktop scanner
you can scan images from a broad
range of original documents, save
the images in industry-standard
file formats such as TIFF, and
then use the images with Page-
Maker and other desktop pub-
lishing applications.

HP is now offering a comprehen-
sive solution for graphics in
desktop publishing: Scanning
Gallery and the HP ScanJet desk-
top scanner for images, Charting
Gallery for business charts, and
Drawing Gallery for illustrations.
For the name of a dealer near
you, call 1-800-367-4772.

Gallery, and PageMaker. The image was scanned

using the HP ScanJet desktop scanner. The original was pdnted on an HP LaserJet using an “F" font cartridge.

ABSTRACT

New Advances In Documentation Retrieval

Doug lles, Hewlett Packard Company

Where does one get the right information at just the right time? The data processing industry has
improved the speed in which end users can access data (e.g. fast report writer, and slick/quick query
languages). New demands are emerging. MIS departments are being asked to provide the same
access to information that traditionally resides only in large volumes of print, a slip of paper
somewhere, or even in someone’s head. Computation is not the problem, but searching and retrieval
capabilities to find the proverbial “needle in a haystack”.

New disciplines are appearing: knowledge engineering, expert systems, on line database services,
electronic bulletin boards, electronic mail, etc.

By applying new technilogies, it is possible to make significant improvements in the ability to solve
problems and make smarter business decisions. This paper presents solutions available today,
together with barriers to implementation.

BEYOND LOGON SECURITY

Joe Junker
Western Savings and Loan
3200 E. Camelback Rd. Ste. 359
Phoenix, AZ 85018

Computer Crime..Computer Security--Buzzwords that have
become rampant both in the international press and within
our industry. What's the big deal?

How does $500,000.00 sound? That's how much the average
computer criminal walks off with, according to William H.
Webster, former director of the Federal Bureau of
Investigation. The problem may be worse than your board of
directors would like to think!

As data processing professionals, we have been charged with
the responsibilities for protecting our business from

accidental loss and white c¢ollar crime. The supportive
functions to protect our systems from intentional 1loss
however, are lagging behind. With the increasingly more

complex systems, our human ability to manage all of the
systems' resources is being taxed to its limit.

Establishing the scope, c¢riteria and initial security plan
are the most important building blocks in securing your
system from intentional and unintentional loss. Considering
the high visibility of system security within the
organization, and the potential for loss, beginning a plan
for security maintenance and control is an important matter
on the data processing manager's agenda.

This paper will present an overview of the HP3000 and
security. Summarizing the characteristic operating
environment of the HP3000, and providing a view of current
access control methods, this paper will discuss application
level security in detail, to aid in beginning to develop a
security plan suitable for the HP3000.

Beyond Logon Security

The Completely Secure System

The principle of the completely secure system is made up of
a triad of factors. Physical security is the security
derived from computer room access controls, environmental
maintenance controls, and communications equipment controls.
Operational security is the set of rules and procedures
established for operators, tape backups, programming
standards, accounting structures, file security matrices,
and device restrictions. Application security consists of
end-user interfaces and data access capabilities.
Theoretically all three of these security types combined and
enforced will result in a totally secure system.

For all practical purposes however, no system is impregnable
to unauthorized access. Once the first cable is strung
outside the computer room, or the first dial-up modem is
installed, the data-laden computer becomes a security risk.

Physical, operational, and application security combined can

improve the security profile of a system. All three of
these components of complete security are made up of five
functions: Risk Avoidance, Deterrence, Prevention,

Detection, and Recovery.

Lty Compo

Risk--
R=L *P
The risk equation, R = L * P, is commonly used by risk

management consultants in helping clients evaluate the
potential for risk (R) based on the expected loss (L) and
the probability or frequency of exposure to 1loss (P).
According to the risk equation, the more you have to lose,
and/or the higher the probability (or frequency) your system
is exposed to potential loss, the higher your total level of
risk. Only by reducing the expected 1loss (L), or the
frequency of exposure to loss (P), can risk be minimized.

The HP3000 poses some special challenges to the system

manager trying to minimize risk. With its multiprogrammed
interactive operating system, and high number of connected
or dial-up ports, the frequency for 1loss (P), can be

considered very high.

Beyond Logon Security

Operational security set up through MPE file matrices and
accounting structures (Engberg,Volokh) can help minimize the
expected loss (L) by restricting read or write access from
unauthorized persons. IMAGE and MPE security can help
"hide" certain elements of data from users based on logon
capabilities or location within the accounting structure.
Without an additional barrier besides 1logon capabilities
security between the criminal and the data, all the criminal
needs is the correct logon to begin destroying or stealing
data.

A recent phenomenon has been the introduction of nmore
distributed systems. The divisional or departmental HP3000
lowers the potential loss (L), yet increases the probability
for risk (P) by exposing more ports over a wider geographic
area.

With distributed systems also come distributed system

managers. Some companies (including HP), have turned over
the entire accounting structure maintenance within an
account to "subsystem managers." With all of this growth in

responsibility comes an explosion of system management
knowledge which was once 1locked in the corner of the
computer room.

It becomes evident that those of us who use the HP3000 to
its best potential, as a distributed processor with 30 to
200 users able to access the system (sometimes 17-20 hours
per day) must consider the high potential for risk. We must
compensate for this high risk factor through emphasizing the
other security functions, deterrence, prevention, detection
and recovery.

Deterrence, Prevention, and Detection

When these three functions are discussed, the order in which
they actually work together to improve security wusually
becomes muddled.

Deterrence can start from the moment the user sits at the
terminal. Whether logging on, or Jjust hitting return the
first thing in the morning, the system should welcome the
user with a statement of ownership and intended use. Blake
suggests the following :WELCOME message:

Beyond Logon Security

de gk dk ok dk %k dk ok %k %k 3k dk 3k sk Kk dk sk gk gk %k dk sk sk gk sk sk %k dk gk k dk %k Jk dk sk dk ok vk ok ok vk k vk gk sk ok %k Kk ki ok ok Kk ok ok k kR ok

* Welcome to MY SYSTEM *
% 3% % % 3k J sk 3% % dk % 3k 3%k sk 3k % % % s sk 3k % %k % %k 3k 3%k sk 3% v %k dk ok 3k % k 3k 3k sk ok % 3k 3k %k k Kk %k %k Kk sk 3%k dk Kk %k Kk Kk Kk k Kk %
* This is a private system operated for XYZ Company *
* Business ONLY! Authorization from XYZ management is *
* required to use this system. Use by unauthorized *
* persons is prohibited and may result in prosecution. *

% % % % Kk % ok Kk ok %k 3k %k % sk Kk k %k %k %k %k 3k 5% dk 3k %k 3k %k Kk %k 3k %k sk & %k 3k Kk dk dr ok %k %k Kk ok %k ok %k Kk %k %k ok 5k %k %k %k ok k Kk Kk ok

Deterrence is meant to combat intent before it has developed
sufficiently to become action. Even the smallest deterrence
will sometimes keep an honest person honest. The HP3000's
:WELCOME facility can be an aid in adding some deterrence to
the front end of the system.

Prevention in the HP3000 environment can be found most
commonly as the password(s) required to access the system.
Lockwords on files, passwords to databases, and user-id's
within application programs are other forms of prevention.
Where file security is concerned, Volokh contends that IMAGE
security and lockword security are not particularly useful.
Instead, he suggests that security matrices for files, or
application controls in programs control access to
databases/files based on the application user's id.

Most preventative measures will be ineffective unless
detection is incorporated in the security system. The
detection method adopted should not inundate the systen
manager with information (such as reading all job/session
initiation/termination entries in a log file), but should
provide enough information to discriminate and deduce intent
from the report output.

The auditing function, wusually an effective means of
corporate fiscal security detection, plays a critical role
in the detection of computer crimes. Just as we, the system
managers, are having trouble keeping up with the challenges
of security, auditing 1is also 1lagging behind in the
onslaught of technology. In a report prepared by the
Stanford Research Institute for the Institute of Internal
Auditors, the auditing function was documented as having
learned to audit batch operated computer systems, but are
not yet able to contend with online, distributed systems
with telecommunications access. This can present a real
problem in making the detection of computer crime adequate
for the HP3000 environment.

Beyond Logon Security

As noted above, detection relies on some sort of 1logging.
Effective logging and detection can act as a very strong
deterrent. This 1is where the grand circle of security
measures begins.

Deterrence, prevention, and detection interplay with the
other functions to begin providing a more cohesive security
environment for the system. The best method of securing
HP3000 applications and files will combine deterrence,
prevention, and detection, and ease their administration.

Y

Accurate and timely detection can ease recovery. Disaster
recovery, another of our industry's most recent buzzwords,
is part of this plan, but not discussed here, since it is

usually considered more operational- than application-
related. After the accidental or intentional destruction of
data, a minor disaster has occurred. Being able to trace

either by user, or some other unique identifier the
transactions which took place is critical in recovering from
such a disaster. It seems again that detection of data
modification becomes of paramount importance.

Beyond Logon Security

Recommendation

Based on the needs defined thus far for securing the HP3000,
it appears desirable to limit the number of people who have
direct access to MPE (the colon). By limiting the number of
people logging directly into MPE, the following security
functions will be affected:

1) Risk is decreased.
Less people logging on to MPE enables a
greater degree of security by posing another
barrier for both application and file access
to unauthorized persons (there are LESS wide
opened doors).

2) Deterrence is enhanced.
The knowledge that a "big brother"” program
is managing the users' selection, running,
and exits from applications adds an un-
certainty to the potential criminal's minds.
They will feel that an unanticipated
detection is more likely, within such a
structure.

3) Prevention is increased.
Critical applications can be separately
passworded and controlled. Ewven critical
transactions, if managed through the security
system can be passworded.

4) Detection becomes less cumbersome.
Logging by application start and stop, or by
transaction can be performed. Creating the
direct user-to-application cross-reference
can aid in the tracking and auditing of users
accessing applications.

5) Recovery is made easier.
With lists created in #4, transactions and
file access can be more dependably backed
out, or databases restored.

Beyond Logon Security

6) It is generally more "friendly" than a
colon. Users will have less trouble and
make fewer mistakes if the drudgery of
typing "RUN PAYROLL"” or "PURGE PAYMAST" are
taken out of their hands. A mistyped
filename in this case constitutes a
serious security violation. Would MPE
logging tell you this? NO!

Understanding the operating environment of the HP3000 has
enabled us to narrow our examination of options to only
those applications which control user access with MPE behind
the scenes. Volokh 1labels this approach the inclusive
approach, where one 1is permitted only certain specific
things.

HP3000 Application
Security Administration

Currently, user capabilities without MPE are being
controlled by one or more of the following methods:

1) MPE logon UDC's
2) Process-handling (PH) menus
3) Startsess and monitor security systems.

We have seen how deterrence, prevention, and detection play
important roles in securing a system from 1loss. Our
examination of the three control methods for HP3000 security
will be based on each solution's ability to provide those
security functions. In addition to the primary security
functions, the implementation, integration with existing
applications, and administration features of each security
method will be reviewed.

Beyond Logon Security

The integration, or means of linking the logon security
system to the capabilities assigned by applications will be
given special emphasis. Beyond logon security, the next
most important <control ©points are those included in
applications. These security control points can aid in the
prevention, detection and recovery from the following
security exposures:

1) Accidental Modification
- Hardware Malfunction
- Application Software Malfunction
- Duplication

2) Accidental Destruction

- Writing over a "good" file
- Losing an error or success message

3) Intentional Disclosure
- Reports run under unauthorized circumstances
4) Intentional Modification

- Adding "unapproved" transactions
- Modifying vital records {(control records)

5) Intentional Destruction

- Deleting vital records (control records)

MPE Logon UDC's

The MPE 1logon user defined Command (UDC) in one form or
another was the basis for most and is still the basis for
most logon security schemes installed on HP3000 hardware.

Implementation

The logon UDC is implemented to initiate an application when
the user is logged on, and immediately end the session when
the application is ended. Figure 1 shows the "JCL" for a
typical logon UDC.

Beyond Logon Security

Figure 1

MPELOGON

OPTION LOGON,NOBREAK
CCNTINUE

RUN CHECKS.PUB.APSYS
BYE

The LOGON,NOBREAK in the second line of this UDC disables
the break key and immediately at logon instructs MPE to use
this UDC for "batch command"” input from the rest of the UDC
file. By disabling the break key, the user is unable to
BREAK and :ABORT the program, which would allow access to
MPE. The CONTINUE statement in the third line of this UDC
will allow the UDC to complete (logoff the user) should the
program abort. In this instance, the CHECKS.PUB.APSYS
program is the only program run by the user whose catalog
had been set to this UDC file.

The logon UDC is created in an EDITOR file and named by the
creator following file naming conventions for the HP3000.
The :SETCATALOG filename command is used, and MPE cross-
references this UDC in CATALOG.PUB.SYS. The :SETCATALOG
command has an ;ACCOUNT and ;SYSTEM parameter to allow
designation for whole accounts or the entire system for
enabling UDC's at logon.

Deterrence

The logon UDC offers little, if any deterrence to criminals.
Unless prefaced with the :WELCOME message discussed earlier
in this paper the logon UDC is a welcome sight to c¢riminals,
putting them directly into one of your organization's
applications.

Prevention

The passwords (user,group,account) if implemented are the
only barriers to the c¢riminal accessing one of the system's

applications. In some cases, implementing UDC's may be less
secure than leaving MPE available to users because of the
ease of starting an application with 1logon UDC's. To

protect from insider theft or destruction, however, the
logon UDC is a good means of preventing either unintentional
destruction of files wvia :PURGE commands, or intentional
breaches of security within the operational limits of the
MPE accounting structure.

Beyond Logon Security

Detection

Little means of detection is available when using

application-only 1logon UDC's. The only available log of
system use are session initiations and terminations buried
in the voluminous system log files. With such inadequate

detection capabilities, deterrence becomes even weaker.
Users, and eventually the c¢riminal 1learns that 1little
control is enforced on their sessions.

Integration

With the single application UDC, there is no integration of
multiple systems within the umbrella of a menu or
supervisor. It amounts to one logon/one application. For a
user to run 3 applications controlled under single
application UDC's 3 logons would be needed.

Administration

Since uniform naming of UDC files and keeping track of the
relationships of wuser to UDC would be a manual task,
maintenance of the cross-references are not maintained as
they should be. Auditors would not be impressed by the
effort needed to cross-reference user to UDC's to
applications, a task basic to the proper administration of
security systems.

Summary

The single application UDC 1is the weakest form of
implementing the inclusive approach to applications-
security. Its use would be suitable for HP3000's with only
one application allowed per user, but becomes impractical
when more than one application is available to a single
user.

10

Beyond Logon Security

Process Handling Menus

The glaring weakness of inflexibility in single application
logon UDC's were addressed with the development of Process
Handling (PH) menu systems. The PH supervisor progranm,
driven by pre-established parameters based on the user's
logon or ID, presents a menu of applications available to
the user. This approach began to bring HP3000 application
security of age. By requiring parameters to run the PH menu
program, the implementation of this menu system improved
the auditability of wuser/application relationships on a
system-wide basis.

Implementation

The PH supervisor program is inserted into the MPE logon UDC
as 1its single application. This program, capable of
process-handling to any number of applications was no longer
a limitation for applications security administrators, but a
gateway to any of the applications pre-configured for the
user. A database is constructed by the security
administrator and simple menu screens are created either by
the user, or dynamically within the menu program. Cross-—
references are established in the security database between
users and screens. Additional passwords, encrypted, can be
added for users to reply to at logon.

Deterrence

There is more visible control over the application
environment using PH menus. Deterrence 1is improved by
virtue of this appearance. Another greeting message perhaps
customized by application group can be build into the
screens displayed to the user.

Prevention
Most PH menu systems commercially available have added

passwords to enhance the prevention aspects of security.
Most also enforce port security if so desired a well-

recognized weakness in MPE security. Enhancements to
identify users more specifically, by session name, date, or
time of day are part of most PH menu systems. Aging

passwords, and notifying users of required password changes
are available with some systems.

11

Beyond Logon Security

Detection

With the supervisor program monitoring access into the
HP3000, PH systems are capable of a greater degree of
detection. Notifications such as printed reports of
violations routed to the system manager enhance the system
manager's ability to find out about security violations
immediately. Detection and follow-up on even the most minor
password errors can show wusers the system manager's
commitment to a secure environment.

Integration

Certainly, the PH system is an improvement over UDC's where
integration is concerned. Complete integration with the
protection of applications on an application level has not
been addressed by the PH menu system. Controlling access by
"application group" 1is the strength of PH menu systems.
When additional application-level restrictions need to be
applied, the individual application subsystem must track and
control those.

Administration

The necessity for creating the application environment for
each user before implementing PH menu security has improved
the accessibility of user profiles for HP3000 logon. System
managers must do more planning before implementing PH menu
systems, and this has been beneficial to the documentation
process. Administering users in MPE, the PH subsystem, and
then applications however, complicates security
administration. Sometimes 3 or 4 lists of users, user-id's,
and application security schemes must be combined to produce
one document for auditing the current user access situation.

12

Beyond Logon Security

Summary

PH menus, combined with the reporting of the PH menu
parameters, have enhanced application 1level security
tremendously. Although complete integration between MPE,
the menu system, and application restrictions has not yet
come to the forefront, enough integration to aid security
administrators in the documentation of "who can do what
when” has been built into PH menu systems. Complete
integration of MPE user assignment, PH user assignment, and
application user capabilities would be the next logical step
in improving the control and auditability of the HP3000
applications environment. Only by bringing the security
administrator's job (including MPE wuser <creation and
maintenance) under the umbrella of the PH menu system
maintenance, can the administration of PH menu systems be
improved. Some PH systems have already integrated the
:NEWUSER and :ALTUSER commands into the PH User Maintenance.
In some instances, the prevention afforded by PH menu
systems 1is more effective than MPE security due to the
encryption and random selection of passwords.

STARTSESS and Monitor
Se ity Systems

STARTSESS and nmonitor security systems rely on an
"initiator" program to initiate the user's interaction with
applications. With either of these systems, a user'’'s
interface with MPE can be limited very effectively. Even
the :HELLO command can be eliminated.

Implementation

Either through a batch monitor, or an online monitor program
devices are allocated by these security systems. The
programs either initiate sessions (STARTSESS) or direct I/O
(monitors) to devices configured into the monitor control
parameters. The emphasis of security administration using
these methods is based on devices rather than users or user-
id’'s.

13

Beyond Logon Security

Deterrence

From the wuser's perspective, the STARTSESS and monitor
systems may appear very similar to PH menus or logon UDC's.
The need to log on to the system is eliminated, and in some
cases, hitting RETURN on an unopened monitor system device
will not even display a colon (:). By educating users of
the responsibility of the monitor programs (all transactions
actually passing through the monitor program) they can
become aware that their transactions may be put under
scrutiny.

Prevention

Because users don't have to log on to the system, the
capability to password session or monitor dialogue
initiation is required to provide any prevention. Port
security is at its ultimate 1level with either of these
systems because of the system's reliance on device addresses
for configuration. As with PH menus, identification of
users by user-id, date, or time of day can be specified for
additional logging.

Detection

As in PH menu systems, a supervisor program is responsible
for either the session initiation, or the entire
transaction-processing activity from a user's input.
Reports of violations, or even strict procedural controls on
transactions processed built within these systems can
improve detection capabilities.

Some of the STARTSESS software has reached the same level of
integration already available from PH menu systems. In the
STARTSESS systems, applications are built into a device
capability 1list, and passwords can be regquired by
application. Monitor type systems are usually integrated
into a single application, and are typically more limited in
areas of application mixes.

14

Beyond Logon Security

Administration

Devices become the key considerations in configuring a

STARTSESS or Monitor security system. The physical
placement of users becomes the critical element in
determining "who did what when."” Dial-up lines are ruled

out with either of these security systems because device
allocation depends on an available terminal device.
Although allocating these devices directly to communications
equipment may be possible, the difficulty of implementation,
and lack of definite user identity (location) probably rules
out voice or rotary-line connections.

Summary

STARTSESS security methods offer all of the advantages
available from PH menu systems, but are extremely limited
where voice or rotary 1line connections are required.
Monitor programs offer a very great deal of application and
logon security, but tend to be tied to one application, and
their user in a mixed application environment has never
become prevalent. MPE user assignment could theoretically
be eliminated with STARTSESS applications (allocate only one
user per application if desired), and are necessarily
eliminated in monitor security applications. By eliminating
the large numbers of users allocated through MPE, one level
of cross-referencing users (MPE users) for auditing purposes
can be simplified.

A less obvious problem with both the STARTSESS and monitor
security method 1is its reliance on physical factors
sometimes beyond the control of data processing, and even
user management...physical placement of users. EXAMPLE: 1If
device 39 malfunctions (broken keyboard, no power, etc.),
and the normal user for device 39 needs to use the system,
how do we manage this situation? When do we return the
"substitute device" back to its normal service? What if
this happens on third shift, the last day of the month, and
orders are being held from shipment waiting for device 39's
user to make shipments? This dilemma could lead to the
delegation of security-administration to the $4.50/Hr third
shift operator. This could be a dangerous situationt!
(awakening, perhaps).

15

Beyond Logon Security

Future Solutions

In the pursuit of more secure computer systems, advances are
made more rapidly where physical and operational security
are concerned. Advances to aid the operational security for
HP3000's are Jjust around the corner. Encrypted passwords,
encrypted store tapes, and accounting structure maintenance
enhancements will probably be introduced by Hewlett-Packard
or third-party vendors very soon. Application security and
its relationship to logon security, however, have not been
integrated, and may be the major challenge of securing and
controlling systems into the 1990's.

The weaknesses from lack of integration between logon and
applications cannot ultimately be "blamed" on the method of
application-selection used. Instead, the standards for
implementing functional security within applications is
probably the leading «culprit in <causing an interface
problem.

Total application security control, illustrated in figure 2,
consists of six characteristics. Current security systems
emphasize elements one through four. The area of data
responsibility, or files maintainable by the user, are not
considered in the general applications-security systems.
The applications (AR, AP, Payroll, etc.) usually ask for
another wuser-id or ©password to identify the user's
capabilities in performing file-maintenance functions.

16

Beyond Logon Security

FIGURE 2

User
Logon

RULE XZ Dewces \099”'

3 \\:oggm
Time/Day

7 \\wﬁ@

Applications

Area of Data Responsibility

FUNCTI1ONS
Inquire | Add | Modify | Delete

6 Elements of Total Application Security Control

A\

Lo

Where double lines are shown, applicable restrictions can be
applied. Rules establish the type and limitations of
restrictions. Logging on all levels of the triangle, and
selection from the logfiles provide reporting of all levels
of access within this security environment.

The rules (to the left of the triangle), and the selection
of logging records (to the right of the triangle), become
the key items in the security system. Rules and logging
ease administration, deterrence, prevention, detection, and
recovery. The all-inclusive applications and logon security
system must meet the following requirements:

1) Applications must be directly defined within the
security system's rules.

2) Functions within applications must be defined
within the security system's rules.

3) Access to these rules must be available to
application programs via callable subroutines.

\7

Beyond Logon Security

4) Access to logging routines must be available to
applications via callable subroutines.

5) All parameters must be general enough to allow
loose or tight restrictions as required by
applications.

6) The security system should provide the guidelines

that can be easily adopted in applications-
development, building a security-integration
methodology.

7) Access to this wealth of information on logons,
applications, and capabilities must be secured
from unauthorized access through encryption and
procedural controls.

By solving more of the problems of the security
administrator BEYOND LOGON SECURITY, a more comprehensive
and secure applications environment can be nurtured for the
HP3000 systems environment.

1B

Beyond Logon Security

Bibliography
Books

Fisher, Royal P., Information Systems Security, New Jersey:
Prentice-Hall, Inc., 1984.

Hsiao, Kerr, Madnick, Computer Security. New York: The
Academic Press, 1979.

Parker, Donn B., Computer Security Management, Reston, VA:
Reston Publishing Company, Inc., 1981.

U.S. Congress Senate, Committee on Government Operations,
Computer Security In Federal Programs, Washington, DC: U.S.
Government Printing Office, 1977.

Volokh, Green, Thoughts and Discourses on HP3000 Software,
Los Angeles: VESOFT, Inc., Second Edition, 1986.

Articles

Berney, Karen, "The Cutting Edge", Nation's Business, April,
1986, pg. 57.

Blake, Isaac, "Computer Security and Legal Issues", I
Detroit Conference Proceedings, October, 1986, Volume
Paper 3315.

Engberg, Tony, "Reinforcing HP3000 Security", 1982 Second

Also, Interact Magazine, January/February, 1983, PP. 38/43.

Firpo, Janine, "Security Concerns and Solutions"”, INTEREX
Detroit Conference Proceedings, October, 1986, Volume II,
Paper 3316, Also "Security: Solving MPE Pitfalls", Interact

Magazine, August, 1986, pp. 56-60.

Hill, Peter R., " 'HELLO' - An unfriendly greeting, or an
offer of seduction?", INTEREX Detroit Conference
Proceedings, October, 1986, Volume II, Paper 3314.

Runk, Joseph, "Utility offers G'day to system managers,
users", The Chronicle, March, 1987, pp. 38-40.

LaDuca, Samuel W., "Security: What I Really Want", Interact
Magazine, June 1985, pg. 55.

Beyond Logon Security

"Computer Crime: Theft in Bits and Bytes",

Lewis, Mike,
February, 1985, pp. 57-58.

Peterson, I., "Federal Computer Security Concerns", Science

October 12, 1985, pg. 230.

20

PROBLEM BOLVING IN AN HP3000 BHOP

Michel E. Kabay

JINBU CORPORATION
P. 0. BOX 509 WESTMOUNT
MONTREAL, QUEBEC, CANADA
H3Z 2Te6

INTRODUCTION

All of us have solved, are solving, and will solve problems
in our work. To solve problems faster and train others to do
so effectively, this paper presents a systematic approach to
problem solving based on well-established scientific
methodology. Examples are drawn from the HP3000 environment.

The paper treats the following topics:

o SET YOUR GOALS

o GET THE GLOBAL PICTURE

o DISTINGUISH OBSERVATION FROM ASSUMPTION
o DISTINGUISH OBSERVATION FROM HEARSAY

o DISTINGUISH OBSERVATION FROM HYPOTHESI1S
o CHALLENGE YOUR HYPOTHESIS

o TRACK THE DETAILS

o RTFM

o RTFSSB

o GETTING THE MOST OUT OF P.1.C.S.
o HELP FROM YOUR LOCAL HP TEAM
o TIME AND MATERIALS FROM THE SEO

Copyright M.E.Kabay 1987 PAGE 1 OF 14

SET YOUR GOALS

S8hort-term objective of problem solving

FIX IT

Long-term objectives of problem solving

FIGURE OUT WHY IT HAPPENED

MAKE SURE IT DOESN'T HAPPEN AGAIN (IF POSSIBLE)

Copyright M.E.Kabay 1987 PAGE 2 OF 14

Find

PROG:

TECH:

This

GET THE GLOBAL PICTURE

out what the person ls trying to do:

How do I write octal data directly in the
directory?

why would you want to do that?

Because 1 have to alter the first 8 bytes of the
file block, some parts of the file index block,
and data in the group and account index blocks.

No, I mean, what are you trying to do? How would
you describe the problem to someone who didn't
know about the directory?

I have to change the name of the file.

How about :RENAME?

Oh yeah....

principle applies equally well to non-technical issues:

Can I have system ALPHA for a production that
lasts 3 hours and takes 2,000,000 sectors of
space this weekend?

Bad answer: Sorry, ALPHA's booked solid this weekend.

Better answer: Sorry, ALPHA's booked solid this weekend. But

what's the problem--what do you need? Maybe
we can solve it some other way.

--and in this actual case, the programmer had
erroneously assumed that only ALPHA would handle the
job; 1in fact, system BETA was free and the special job
ran perfectly on it.

Copyright M.E.Kabay 1987 PAGE 3 OF 14

DISTINGUISH OBSERVATION FROM ASSUMPTION

Case study:

The FORTRAN compiler doesn't work any more.

Oh? That's interesting; it hasn't had major modifica-
tions in years. What's the problem?

I have this program that was working fine, and now it doesn't
work any more.

So when did you last run it?

Well, actually, I didn't exactly run it--it was another
person.

who?

Umm, you wouldn't know them:they're on another computer.
S8ame HP3000 model as ours?

No, actually, it's a CDC.

Say, how did you get this program, then? Tape?
Diskette?

No, I typed it in from the listing.

ASSUMPTIONS:
(a) perfect transcription;
(b) identical versions of FORTRAN;

(c) identical implementation on different computers.

Copyright M.E.Kabay 1987 PAGE 4 OF 14

DISTINGUISH OBSERVATION FROM HEARSAY

Case study:

One of our terminals has double softkeys showing up.

What were you doing when it happened?
We were running program ABC.DEF in menu G when we hit the £3
key; and then the softkey labels appeared above the regqular
set.

What do the keys show? The same as the original set or
different?

I don't remember.
Well, can you go see it again?
Actually, I didn't see it myself; C told me.

Gets C. [...C arrives...] C, tell me again what
happened.

Well,] was running prodram ABC,DEG when,..

Wait a minute, not program ABC.DEF?

No, that one xupns fine. Whyz

Copyright M.E.Kabay 1987 PAGE 5 OF 1

DISTINGUISH OBSERVATION FROM HYPOTHESIS

Case study:

There's some sort of problem with port 26 on system I--all we
can get is an endless series of the letter 'k' in lower case
all over the screen. It's hardwired, so it can't be a
datacomm problem.

No, actually, the PROBLEM is the 'k' all over the screen;
we DON'T KNOW YET whether it's the

S8CREEN or the
KEYBOARD or the
CABLE between the screen and the keyboard or the
CABLE between the screen and the port or the
PORT or the A
AIB micro-board or the
AIB itself or the
8IB or the
IMB or the
ATP driver or the main
MEMORY boards or the

CPU boards or the

BACKPLANE connectors.

Copyright M.E.Kabay 1987 PAGE 6 OF 14

CHALLENGE YOUR HYPOTHES1S8

Or "test your ideas".

So let's see this terminal.

IDEA:

TEST:

IDEA:

TEST:

IDEA:

TEST:

If it's the port,

then detaching the RS-232 connector will stop
the 'k'--AHA, it doesn't. The garbage has
nothing to do with the link to the computer.
8o we look at something else.

Suppose it's the keyboard? Then

removing the keyboard connection will stop it.
Yes indeed, it does. 1 see the connector's a
littl bent... oh, I see:there's a pin out of
place because perhaps someone forced the
connector into place.

1f the pin is responsible, then

perhaps putting it back will f£ix the problem.

Yes.... it works now."

Copyright M.E.Kabay 1987 PAGE 7 OF 14

TRACK THE DETAILS

When a major problem occurs,
SIT DOWN AND RECONSTRUCT THE EVENTS

before trying out various solutions and workarounds.

Note exactly
WHAT you did
in WHAT SEQUENCE and
whether there were UNUSUAL EVENTS
before the problem

occurred.

RON'T PREJUDGE WHAT'S IMPORTANT

CUST: "We had a system failure XX a few minutes ago."
PICS: "Exactly what did you do?"
CUST: "The operator was working with spool files. He

changed the outfence on ldev 6, then tried to alter
the priority of a spoolfile on a remote spooled
printer. Oh--he made a typing mistake on the
classname: used MAX even though we had removed
that classname a week ago. ‘hen he--"

PICS: "WAIT! That's it! The bad classname. There's a
known bug that causes this system tailure when you
refer to a nonexistent classname. we'll send you a
patch."

Copyright M.E.Kabay 1987 PAGE 8 OF 14

RTFM

Read the Fine Hanuail

Your HP Reference Manuals should be

(o} up to date

(o} accessible to programming and operations statt
o in numbered, labelled volumes

o cross indexed by key word in a separate list

o slgned out to show where the volume 1s now

0 returned within a few hours at most

o purchased separately for frequent users

Copyright M.E.Kabay 1987 PAGE 9 OF 14

RTFSSB

Read the Fine

Software Status Bulletin

Every quarter, the SSB

index should be scanned by

the System Manager and all < and you learn
problems involving SYSTEM (=== a lot about
FAILURES, HANGS8, and DATA < MPE and subsystems
CORRUPTION should be

highlighted in colour.

Every fortnight, the update
issue should be scanned and
added to the binder holding
the quarterly S8SB and the
biweekly update issues.

> In some large shops,
But there has to be > information about Sks
more than one system > and HANGS is added to
for this to be useful ===> online HELP catalogs
since otherwise you > which make precise
can't get at the info. > information available
> by failure number.

Copyright M.E.Kabay 1987 PAGE 10 OF 14

GETTING THE MOST OUT OF P.I.C.S.
Phone-In Consulting Service

Atlanta, Georgla
Santa Clara, California

1) Clarify the problem yourselves betore calling PICS.

For this initial phase, don't worry about neat notes--
just write down everything you remember about the
events.

--What were we trying to do?

--How were we trying to do it?

--Exactly what did we observe?

--Then what did we do--in what order?
And what happened?

2) Now write down the details in chronological order and
try to make sense out of them.

3) If it's a SYSTEM FAILURE,

a) check section IX of the System Operation and
Resource Management Reterence Manual (binder #2 ot
the standard Reference Manual set) to see what the
SF means and what to do about starting the system
again;

b) you will probably have to take a memory dump and
possibly a shift-shring dump;

c) if necessary and possible, restart the system with
a WARMSTART to save spoolfiles;

d) As the system comes up, tind or remember your PICS
SYSTEM IDENTIFIER and call PICS;
e) always =SHUTDOWN and start with a COOLSTART it

permitted; otherwise get your KNOWN-GOOD COLDLOAD
TAPE and COLDSTART or (gaspl!) RELOAD.

Copyright M.E.Kabay 1987 PAGE 11 UF 14

GETTING THE MOST OUT OF P.I.C.8.~-cont'd

4) Do your homework before calling PIC8 on a subsystem or
application system problem

a) Look in the Reference Manuals for a reasonable
period (how about up to 30 minutes?) to be sure of
the principles (how it's supposed to work);

b) Ask colleagues for tips and explanations of the
application software problem.

c) Will avoid the ever-embarrassing, "Look on page 3-
13 of the Reference Manual" answer to your
question.

d) Will also keep your reputation high with PICS8 staft
and may help you get faster cooperation from them
when you really have a problem ("This lady really
knows her stuff; if she's calling, it must be
serious--1'11 call her right away.")

5) Look in the Software Status Bulletins when there are
system failures or hangs while waiting tor PICS to call
back.

6) Get out your lists ot
a) PATCHES;

b) system sottware version numbers;

c) PRIV MODE NON-HP or UNSUPPORTED UTILITIES beiling

RUN;
d) system configuration;
e) previous SF of this kind (in the same range}).

) Keep records of exactly WHOM you speak with WHEN about
WHAT in dealing with PICS. Record the PICS-ID of each
call prominently on all your records for each problem.

8) For large shops with several systems and many
peripherals, consider a small database tor appropriate
information about all PICS calls and other technical
problems. A microcomputer can be a good choice so you
can find information even when your HP3000Us are down.

Copyright M.E.Kabay 1987 PAGE 12 OF 14

HELP FROM YOUR LOCAL HP TEAM

WHAT PIC8 CANNOT DO

o PICS cannot debug application sottware trom
NON-HP sources.

o PICS cannot repalr your sottware even if they
find the problem.
o PICS can install only certain patches.

[} PICS cannot physically repair your hardware.

BUT YOUR LOCAL SE AND CE CAN.

THEREFORE YQU SHOULD

o be on good terms with your local SE and Ck;

o keep them up-to-date on your technical
problems;

o be as precise in your dealings with local

staff as with PICS statf;

o keep the managers at HP intormed ot problems
and progress.

Copyright M.E.Kabay 1987 PAGE 13 OF 14

TIME AND MATERIALS FROM THE SEO

THE LOCAL SEO

o can help you debug your own applications on a
TIME & MATERIALS basis (that means they will
help you, but it's not part of your software

support contract)

o will negociate special training courses for

your staff at HP or in your oftices

o can help set up benchmarks at reasonable cost

o have a great deal of experience on hand in a

wide variety of situations

o have access to a worldwide network ot human

and technical resources to help you solve your

problems

Copyright M.E.Kabay 1987 PAGE 14 OF 14

Supporting Remote Locations
by
Patrick J. Kelly
PACO Pumps Inc.
Oakland, CA

OUTLINE
I. Introduction
II. Application System Planning
Data Flows

Database Strategy
III. Processor and Data Communications
Processor Options
Data Communications Options
IV. Day-to~Day Support
Equipment
Computer Operations Scheduling
People-to-People Communications and Troubleshooting
V. Training Remote Site Users
VI. Conclusion

I. INTRODUCTIORN

Today I am going to talk about supporting remote MANMAN/Mfg and MANMAN/OMAR
users.

First, let me describe our company, PACO Pumps. Like most "smokestack"
industries our company had not kept pace with computer technology. In 1983
we were batch processing our manufacturing and order entry software on an
IBM mainframe which was located at the parent company (Baltimore Aircoil)
headquarters in Baltimore, Maryland. The PACO headquarters in Oakland was a
remote site to the Corporate Data Center. PACO's remote sites were served
by mail.

Today, we have 90 terminals connected to an HP3000/70 which is located at
the PACO headquarters in Oakland, CA. We have our own data communications
network linking sites in 4 states to the HP3000. We run ASK's MANMAN/Mfg,
OMAR, PLANMAN and will be installing MANMAN/Accounts Payable. PACO is very
"remote-site-oriented” because much our our company's activity occurs
outside the headquarters location.

We will try to answer three questions today:

1. What remote support techniques do we find successful?

-1 -

2. How did we make tradeoff decisions?

3. What are some of the limitations of the ASK software and how did
we overcome them?

II. Application System Planning

Data Flows

In planning systems design or implementation we have found it useful to
develop a data flow diagram of the company's operations.

Figure ‘A and 15 describes the material flows and order flows at PACO Pumps
at a macro level. The headquarters and main plant is in Oakland, CA. Like
an automobile dealership, a Branch sells new pumps, services pumps and
sells repair parts, all for a local market. Some of the branches even rent
pumps.

Database Strategy ~- MANMAN/Mfg

We started our support of remotes by including them in our plans from the
beginning. Before we bought the software we knew that MANMAN/Mfg and OMAR
have a single-plant architecture. The architecture assumes a standalone
cost/profit center, with its own warehouse, shop(s), bills of material,
materials management group, etc.

We toyed with the idea of changing the software to handle all the locations
in one database. We found what ASK has found: that there is no single
multi~-plant problem, so there is no single multi~plant solution. We did not
expect much help from ASK for years. Our data and control flow pattern,
figure 1, is certainly one of thousands of possible configurations that ASK
might support.

What we wanted to do was avoid all the source code changes, yet still serve
multiple sites using a MANMAN/Mfg package that is single-site oriented. We
analyzed every file in the MANMAN database, and every report and concluded
that for a manufacturing site, there was 1little data actually shared
between the sites. It seemed that a separate database per site was the way
for us to go. Separate databases were also less risky. If we were wrong, it
would be easier to put the separate databases together than it would be to
split up a consolidated database.

We encourage our key users to participate in such decisions. We do this
informally as well as at our regular, formal MIS Steering Committee
meetings. It helps to keep MIS in synch with the direction of the business
and keeps user management aware of where MIS is headed.

The major issue of concern to Accounting and Manufacturing was data
integrity. The separate database, password controls and account/group
structure was more than enough to ensure an acceptable level of data
integrity.

Inter-database Data Transfers

During these discussions we defined a few areas where we needed to develop
software to automatically handle data transfers from one database to

-2 -

OAKLAND
PLANT

-

Kew Malor; L #

v

OAKLAND

SeATTLE

PORTLAND

REmoTE BRancuces

MATERTAL [FLOwW

Flavre 14

J

REGIoNAL| [SPARES | TNTER- | [OAKLAND |[SEATTLE |[PokTLAND|[Los DAuAys |[InTeR~
SALES SALES | NATIONAL | [BRANCH |IRRANCH ||BRANCH || ANGELES || g0y o, || PLANT k‘\
SALES 8RANCH Vv
conThoL

Ordor AdminicTration

Appre vt
Ocrders

Ockland |, / \
Plort
SA[‘{’M"*{S
M{,H et
@i“iﬂ Ihvo;‘l‘nr
v

ﬂ/\/e,- ﬁl‘ace.r.r/'nq FA«/
174

/tl;) vre L7

another:

1. Item masters are added by Engineering only to the Oakland Plant
database. The new item masters need to be entered in all 6 databases. This
is done with a series of QUIZ programs that build batch jobs that do the
updating.

2. MNMaterial cost at a branch is the Oakland Plant manufacturing
standard cost marked up by a freight factor if the part is "bought" by the
branch from the Oakland plant. Costs need to be kept in synch monthly.

3. Inter-plant transfers between the main plant in QOakland and the
remote branches are handled in the following manner: a) the branch enters a
purchase order into the branch database (to purchase material from the
Oakland Plant); b) the branch user prints a copy of the purchase order in
the Oakland inventory planning department, ¢) Inventory Planning enters the
order to OMAR as a spares order. This process could be automated.

4. Bill of Material --~ Our branches need access to the BOM's
which are only stored in the Oakland Plant database. They use the LIST,2xx
series on the Oakland Plant database with a password that allows them to do
only list commands. Parts are miscellaneous-issued to the work order
(actually a service order) in their local branch's database.

5. Consolidated Reports -~- A few QUIZ programs have been found to
be sufficient.

The approach we used suggests that a fast way to get multi-plant
capabilities in MANMAN/Mfg is to set up multiple databases and then develop
a few utilities.

Obviously, there is a penalty in terms of redundant storage of data. We are
spending about four hundred dollars per month for lease payments on extra
disc storage plus the cost of backing up and managing the disc space.

Data redundancy does have a performance advantage. By having multiple
databases we have spread the company's total transaction 1load across
several IMAGE databases, and avoided having one database be a bottleneck.
This appears to be one of the reasons why we were able to run a large
number (65) of terminals on an HP3000/58. At the time, we joked that had
one of the biggest, (and slowest) HP3000 geries 58's.

Of more 1long range value, we now have our company in a more flexible
position for the future. Should ASK and HP offer a low priced MANMAN/Mfg +
HP3000 package, then we could easily move our MANMAN/Mfg databases onto
processors located at each branch.

Database Strategy -- MANMAN/Omar

Now that I have made the case for splitting databases, let me explain to
you why we decided to implement one single OMAR database for all sites. We
did not want to modify any source code, yet we had to satisfy these
requirements:

1. Accounts Receivable & Credit --- centralized credit
management function.

TorAL
cCombPAVY omAk

™
N K TO0B COSTING PloGRAMmS
0 Ak LAND
PLANT MFa&
W IT8m mASTERS REVISED CoS7-S)

OAKLAND SEATTLE PoALTLAN D 4,4, DAL AS
BaancH
MFG6 MmFe MmFg.

Database Con 743 vralron

Fl‘j vre -2

2. Consolidated Reporting -----=--- job costing & reports by
shipping location

3. Orders Cross Location -----«--ae half of all the customer
orders are shipped from the Oakland plant MANMAN/Mfg database.

As you can see, the relatively neat separateness of manufacturing is just
not present in Order Entry. The data flow diagram we talked about earlier
confirms this.

We decided to put all the sites into one database. See figure 2. Our main
motivation was to avoid modifying the ASK source code or database structure
to accomodate the remote locations.

We established the single OMAR database.The OMAR Finished Goods Interface
is tied only to the Qakland Plant database so that a T,210 shipment
transaction relieves inventory in ‘the Oakland plant MANMAN/Mfg database.
This works fine for orders that ship from the Oakland plant. Branch
shipments are processed with a T,210 against a non-nettable location called
BRANCH (we use muliple location inventory). This creates some maintenance
work to establish and zero-out these locations.

The shipping location 1is identified by the group code. If negative, then
the shipping location is a branch. The negative code keeps the demand out
of the Oakland Plant demand file and allows QUIZ reports by shipping
location.

Inter-plant transfers from Oakland to the Branches are entered into OMAR
against dummy customer, sales agent and product numbers. This keeps the
statistics accurate. Again there are some maintenance jobs to maintain the
files.

We addressed the need for data integrity by redundant coding. The order
number, group code, note codes and rep number all uniquely identify which
branch office originated an order. This makes it possible to trace "who did
what” if data is inaccurately transacted. However, we are not completely
satisfied with this 1level of data integrity. If all these fields were
entered inaccurately, perhaps intentionally, then it would be difficult to
trace who entered the data. Since there is no audit trail file, the system
vulnerable to this kind of activity. At this time it seems that the only
sure solutions involve modifying the source code.

III. Processor and Data Communications Systems Architecture

Processor Options

It would be very useful to our company to be able to provide a
microcomputer to our small sales offices (PACO has 60), and small HP3000's
to our major ©branch offices, all seamlessly connected via data
communications to the central MANMAN/OMAR database in Oakland.
Unfortunately not all of these options are affordable or supported by the
ASK software. See the figure below:

Processor & Database Options
Multiple Distributed Centralized
Micros Store HP3000's with HP3000
& Forward Local Databases
Data Comm
Options
Dial Up NOT AVAILABLE OK for Simple Equipment
(ASK Software Mfg, Low Equipment Cost
restriction) not for High Datacomm Sves Cost
OMAR. ASK Software--no problems
Requires highly
Skilled MIS
and Users.
Packet NOT AVAILABLE Same as Costs Difficult
(ASK Software) above. to predict
Leased NOT AVAILABLE Same as Costs predictable
but why do it above. Familiar technology
if you have a Extra capacity for
leased line? future applications
Satellite NOT AVAILABLE Same as For very high capacity
above. only. Too expensive
! for less than about 20
terminals.
Concern about
round-trip delay.

Processor & Data Communications System Architecture Options

We would 1like to see the order input portions of OMAR support an
“interactive batch” style of data input. See figure 3. This would allow us
to use microcomputers more widely and simplify the data communications
links.

Though these comments may sound like complaints against ASK and HP, they
are the “"complaints” of a happy customer who wants more. The
single-processor architecture has been successful for us. We have smoothly
upgraded from an HP3000 series 40 to 48 to 58 to 70 in a three year period.
Now we are ready for something more complex.

Data Communications Options

In 1985, we decided to bring the remote sites onto the MANMAN/Mfg system.
We tried some "cheap and dirty" modems first, but quickly replaced them
with Paradyne FDX2400 error-correcting modems, which worked well. These
supported one terminal and a slaved Thinkjet printer at each remote branch.

To implement OMAR we needed additional terminals per branch and a faster

-5 -

/77,)1/64'”/?"7‘&" ”/300 o

\

_ DMAR)
- DATHEASE
FILE
OMAR
SOFTWALE
E0TT Tfmm‘s‘-
FILE "
FILE
HMicro “_”‘(f"kr
\
Edifin Y s
Sa'{"f“"“?l:L ¥ “
N
W ¥
]
User
Eaters
C on‘f—d ions

-Z;ﬂzer active E“jé{ :

/—T-j,/re, St

printer. We investigated WATS, leased lines, packet networks, and
satellites. We decided on a leased line network. See figure 4.

We chose DCA (Date Communications Associates) and CODEX for switching
multiplexers and modems respectively. Mixing vendors' equipment has not
been a problem.

Reliability was a major consideration because we did not want to expend
resources troubleshooting. We ©bought every reliability-enhancing option
available. BEvery CODEX modem has dial-backup capability. The DCA switching
mux's have redundant power supplies and we stock spare mux boards in
Oakland, just in case.

Our headquarters MIS department in Baltimore, MD plays a key role. They
have a line monitoring system, called Data Network Control System (DNCS) by
CODEX, that continuously scans each 1line and alerts the operator in
Baltimore if a 1line begins to deteriorate. Dial backup can be initiated
from either Oakland or Baltimore. The switchover to dial backup happens so
quickly and smoothly that the branch users usually never notice that it
happened. A similar system provided by DCA monitors mux's.

IV. DAY-TO-DAY SUPPORT

Level of Effort

It is generally understood that implementing a system at a remote site is
more costly than implementing at the central site. It is not so apparent
that the day-to-day support costs are also much higher. Due to data
communications costs, the total equipment cost of a remote terminal is much
higher than the cost of a locally wired terminal. The added complexity of
the equipment requires a higher 1level of technical support. Different
working hours make standard schedules impossible to adhere to. There is
substantial economies of scale in a centralized computer center but it is
less than it might appear.

Remote Site Equipment

We chose a Laserjet for the branches because we want to use the Quotation
features of BRel. 6.0 of OMAR. See figure 5. All terminals are HP2392's, as
are most of the terminals at the headquarters. This standardization has
made it possible to easily train people, write standardized procedures, and
it simplifies support over the phone.

Datacomm equipment is the same at each branch. The only difference is in
the number of terminal ports.

All remote computer equipment is from HP and is covered by HP service
contract administered from Oakland. We want avoid burdening the branches
with arranging for maintenance of computer equipment. Their job is to sell
pumps, ours is to maintain the equipment. See figure 5.

Operations Scheduling

When we first brought the MANMAN system in-house, we did not expect the
system and the wusers to require so many batch jobs. By mid-1986 we were

-6 -

manually scheduling over 2000 batch jobs/month and making many errors. We
installed OCS (Operations Control System) and this greatly improved our
error rate and batch processing capacity.

We also found that the operations group had to review thousands of $STDLIST
output every day. It was impossible for human beings to read this output
and catch all the errors. SMP automated this task for us. With OCS and SMP
we can now run over 3000 jobs/month and with an error rate that is a
fraction what it was with only 2000 jobs/month.

Our backup schedule also became a bottleneck. Besides the normal growth of
the 6 MANMAN/Mfg databases and one OMAR database, the Oakland Plant
expanded operations on the second shift which effectively doubled prime
time. We +tried pre-mounting @ tape and initiating the STORE job by the
operator from home at 5 a.m. This helped, for awhile.

A third shift operator was the best solution. Backups are now done between
12:30 a.m. and 2:30 a.m. We are now limited by the speed of the 7978 tape
drive, as are all large HP3000 users.

Our normal schedule is shown in Figure 6. We have a 24 hour maintenance
contract with HP. We schedule repairs and preventive maintenance on
off-hours whenever possible.

People-to-People Communications with Remote Sites

We have a direct telephone numbers (DID) for everyone in the computer room.
This makes it easy for MIS operations to call a branch and for the branch
to call the Operations group.

Psychologists tell us that the telephone conveys 50% of the information of
a face-to-face conversation. To maximize the quality of that 50%, we have
cultivated at least one person at each site to be the “"coordinator" with
MIS. This person communicates computer availability changes and helps with
troubleshooting and scheduling repairs. The coordinator also tends to be
the funnel through which all enhancement requests pass through, though that
was not intended.

The remote users are encouraged to call the HP3000 operator first. From our
console log we find that 80% of users' problems can be resolved at the
HP3000 console. Everyone in the department has some degree of day-to-day
maintenance responsibility. This is defined on the troubleshooting tree
diagram. See figure 7.

The branch managers and coordinators at the remote sites have a copy of
this diagram so that they understand the process of problem resolution. We
wanted the remote site users to never feel that their problem was a "hot
potato” that was being passed from one individual to another. They now
understand that the +technology is complex and all problems cannot be
resolved by one person. Referral of a difficult problem is something they
expect to happen.

For example, there are two people in the "systems and programming group”.
One is responsible for MANMAN and one for OMAR. Each is a backup for the
other. They take turns installing the new releases, both have been trained
in both OMAR and MANMAN. They also have other responsibilities such as
technical support, and applications development.

-7

Just to keep everyone honest. The user is never required to follow the
procedures outlined in the diagram. We only advise that we can usually take
care of their problems faster if they follow the procedure. If a user
habitually follows another path, then we examine why.

Disaster Protection

Disaster protection takes on a new importance with the addition of remote
sites. For example, when only Oakland was on the computer we were not
concerned about power failures, because the power to the users’' terminals
also failed. Now we have users in remote cities who could continue working.
For short-duration outages, the remote sites experience double the downtime
--- theirs and the central site's.

At present we exploring the alternative ways to cope with this and related
disaster protection problems.

V. Training Remote Site Users

At one time or another, we have tried about every training method on our
central and remote users --- outside courses, inside courses, one-on-one
consulting, APICS courses, self-paced courses, video tape, and
train-the-trainer.

For remote users, here are a few of the things that we found worked well:

1. Train remote users at the central site.

2. Have a central site user train the remote users in small groups.

3., Teach the remote user only what they need to know, so that when
they go home they can immediately begin to use the system.

4. Break up your implementation into pilots. Do a pilot at the central
site first and get the pilot participants involved in the training of the
remote users.

5. Develop a condensed procedures manual based on the ASK manuals. It
is their surrogate on-site expert when they return home.

V. Conclusion
Almost every aspect of an MIS Department must change to accomodate

remote sites. Today, I have +tried to cover the areas that are most
important. I hope that this presentation helps you with your remote sites.

\v 2 w\.ull\

—\\,VN v U0 W..\NB _\Q.U H.\\.\\ WU\-SEX\@ lwvﬁaqu ,.H‘erf|l
S SI77500 S0
SYTIV
e xnd 2
Vo wepviy 4
4 (PR, od
L] et SNIC7zrg
NeLlyLS TnTwq t
e > 2y
LT s e
PG ety I NY A0
W ol Eald
.‘\ XAly Aol W7ol)| \dxls
Q“\O QQM.\\\ QN\QQQM,\\\.\ o \N:..Yu*\).ﬂ 1.3”
| ses voa [(wmg=(ony| o/ yoqg
/b ESH W | 49N b hr

N7 wo&

Da(ic"r‘d Al‘n <

7o Ooklend WP300s Piad Backep

- zﬂﬁ Cotles HPrPRoo0

~
-~ //

Ly preal Brapnl Hardare Gon 7{7 wrafon

£ 4 w(;fm%f Service
Bran Hordware — Mulhple CKTS — KC Nett &Vy
— PrinferGpel)— HE Nex? Day

Dato Gumonications — M oden. — — Cdoc Seme D«/
— Mo — DCA Some Day
— Lime — Diat-dackyr

Oekland Date Cla. — HP3000/70 — K ¥ fuur Response
— CRTSE { bnters — Same as Beoncles

Frquore &

FILE: REMOTE, SUPPORT.F1Gh, 12/31/8b

TIME OF
DAY HP3000 ACTIVITY

30 BACKLP

130 *

330 BATCH PROCESSING

4

330 "

630 SYSTEM AVAILABLE

730 FOR TERMINAL USERS

830 *

930
1030
1130
123
1330
1430
1530
1630

OPERATOR
ON-DUTY

3RD SHIFY

15T SHIFT

1730 " AND BATCH PROCESSING NO OPERATOR

1820 *
1930
2030
2130
230
2330

HONDAY THROUGH THURSDAY

1ISER
ALTIVITY

END 2ND SHIFT IN
THE DAKLAND PLANT,
NO USER ACTIVITY,

DALLAS STARTS.
OAKLAND OFFICE.
BRANCH OFFICES.

DALLAS ENDS.

OAKLAND OFFICE END
BRANCH OFFICE END,
START 2ND SHIFT IN
THE OAKLAND PLANT

COMPUTER OPERATIONS SCHEDULE

FIGURE &

i _ o 2?7 w..\ ~ pary 28y voy/ eH\vN\ w2/9 %S \-.\\\1.@ '
A n . | S ATEs
L agfzefs , . : b , “
I . " | m | _ -
: m : _ 2580 o9Y w : P
: _ . vesSay 0 : i ! P
. | ! | . . . :
m : . . PR ;
i azbiy PoTayas : :
H snprhe “ :
: Lt P2 4 h !
: ; i
N h f g -
W T
| ! : _
: ! .
| v i
. ! i . ! - :
1 m |
) .
oS MOLNLLS M sy [Cowog) $HIRL 200449 . UUND o)
[DYENA wruNyS ‘M arIvHsY “ﬂh\s\“ §W i arsiaspdas sSTW ; \#..w : ‘S SN O
FVwo STw-024d SIw- o2y d SIW-0>¥d ST 024 swdo 4§ 07 pr-oovd| X
3 7. , __ ” :
: z/, " \—, \— : \.iﬁ-.v..tlHt\.v g . “ ’ :
. ! Ny Yy wo > wvae .L.LW : “ '
: N __ . . ‘, /2t h : _
‘ v : _ 4
i At . f -
(Svg s p)) anwedo . FJaLVRRd 0 .
R ceocsl goresay | cootg#H .
L dZd . .
' Banparedd 4/93.3&‘.em : v pavy “ .\.n.\uk. Co
._ Wy qoud o SUY 48 i :

AdvanceMail for the Portable PLUS:
Its Design, Installation, and Usage

William L Kemper
Hewlett-Packard Company
Portable Computer Division
1000 NE Circle Blva.
Corvallis, OR 97330

AdvanceMail Design Factors:

AdvanceMail for the Portable PLUS is an electronic mail
application that ties the Portable PLUS to HPDeskManager
(HPDesk), HP's electronic mail package for the HP 3000.
AdvanceMail has been designed with the concept that a
portable computer is not Jjust a small computer, but is a
computing device that can extend office functions far from
the office. Rather than porting a desktop application to
the Portable PLUS, the designers of AdvanceMail considered
the intended environment and the users of the application.
One of the first considerations was to create an application
insulating the naive user from the complexities and
difficulties of current-day PC data communications. The
goal was to enable the user to switch between various data
communications connections with ease and without needing to
re-configure data communications parameters. Since data
communications is not easily understood, the goal of the
application was to provide the user with an easily changed
set of configurations that could be set up for a specific HP
3000. Where a general office product is installed for a
single connection, AdvanceMail had to have the ability to
handle connections that included direct connections, modens,
X.25 public data networks, and complex combinations of
intermediary systems, e.g. data switches and security
software, between the host computer and the Portable PLUS.
The user had to have the ability to select a preset logon as
easily as selecting a phone number.

Error detection and correction during data transmission
becomes significantly more important in remote connections
via modems than a terminal connection in the office. The
application must be able to handle errors without requiring
significant support. The user of the application will not
have the ability to take corrective action. The application
had to be able to recover following an error and not lose
data.

AdvanceMail for the Portable PLUS
1

In addition ¢to dealing with connection management issues,
the designers of AdvanceMail focussed on the dual nature of
electronic mail, the creation and reading of mail versus the
transfer operation. One of the advantages of a portable
computer is the ability to take it away from the office.
The creation and reading of mail could be done without
establishing a connection to the HP 3000. The only time
that a connection was needed was during an actual transfer
operation. In this manner, the more time consuming tasks
could be done without tying up a line. The transfers could
then be done during off hours when phone costs were less
and, by being batched, complete transfers in less time.

How AdvanceMail Works:

AdvanceMail provides the user with the ability to send and
receive electronic mail messages with the Portable PLUS.
AdvanceMail sends messages from the user to HPDesk over
telephone 1lines or a direct computer connection, and
receives messages to the user from HPDesk. HPDesk acts like
a central post office, routing messages and files between
different users.

The main features of AdvanceMail are:

m The In Tray contains messages received from other HPDesk
users. They were received from HPDesk during previous
transfers. Messages will stay in the In Tray until they
are deleted by the user.

m The oOut Tray contains messages which the user has written
on the Portable PLUS and wants to send to others. They
will be sent to HPDesk at the next transfer.

®m The Mail Room 1lists all of the user's HPDesk messages,
both those that AdvanceMail received during the last
transfer and those that were not transferred. Messages
may not be transferred due to user requests or errors
during the transfer.

m Message transfers between AdvanceMail and HPDesk take
place when the user specifies. It can be done while the
user is away or sleeping. A transfer moves any messages
waiting in the Out Tray to HPDesk for distribution to the
people to whom the user addressed the messages. 1In
addition, any messages waiting for the user in HPDesk are
moved to the AdvanceMail In Tray to read later.

B The reading and creation of messages can be done offline
when the user chooses. The actual transfers are batched
which results in reduced charges. Prior to a message
transfer, the user selects a preset configuration.

AdvanceMail for the Portable PLUS
2

The following illustrations show how messages are moved from
AdvanceMail to HPDesk and back.

;

/
CREATE MESSAGES

RS

ﬂ
E-2-3-F-3-1-1-1

HP

S8END MESSAGES & THEN RECEIVE MESSAGES

TRANSFER OPERATION:

7

READ MAIL

NEXT MORNING

AdvanceMail for the Portable PLUS
3

AdvanceMail gsystem Requirements:

AdvanceMail has been designed for the Portable PLUS which is
HP's totally battery powered portable computer. The
Portable PLUS must have a minimum of 384K RAM, a software
drawver, AdvanceMail ROMs, REFLECTION 1[TM] application ROM
and a datacom connection. The datacom connection can be
either a modem to connect to the HP 3000 by telephone or a
direct connection to the HP 3000 via a serial cable.

'vanceM sta ns

The installation of AdvanceMail requires site-specific
customization. The same work is required whether there are
1000 users or just one. In order for AdvanceMail to
automatically transfer messages back and forth with HPDesk,
it must be customized to fit <the particular HP 3000
configuration (dial~-in procedures, intermediary data
switches, security programs, and so on). The customization
is done in command and configuration files, which are then
distributed to the users of AdvanceMail. After these files
are created AdvanceMail can then be installed on the user's
machine. The general steps that need to be taken are:

H Determine the data communications environment.

m Modify command and configuration files to match the data
communications environment, i.e. determine what responses
are needed by the hardware and software to logon to the
host computer.

m Test the command and configuration files by trying an
automatic logon to the HP 3000.

B Test file transfer procedures.

m Distribute pairs of command and configuration files to the
users.

m Install AdvanceMail on the Portable PLUS with the
customized command and configuration files.

B User configures Portable PLUS for individual HPDesk user
passwords and phone numbers.

while the installation of AdvanceMail is not a trivial
process, it is an easy product for end users to use, once it

has been installed. The installation procedures are
documented in "Setting Up AdvanceMail for the System
Administrator." This manual assumes that the person setting

up AdvanceMail, the system administrator, is used to working

AdvanceMail for the Portable PLUS
4

with computers and is familiar with often-used computer
terms. While familiarity with the Portable PLUS is not
required, the system administrator should be familar with
personal computers, especially MS[R]-DOS file structure and
a word processor. Ideally the system administrator should
have knowledge about the HP 3000, data communications, the
Portable PLUS, and REFLECTION command language. Access to
expertise in any missing areas should suffice.

The first step is to determine the data communication
enviroment that AdvanceMail will use. This information will
enable the system administrator to create command files that
meet the needs of the environment. Some items to consider
are:

m What type of connection is between the Portable PLUS and
the HP 3000? (direct or modem)

W Are there intermediary systems involved between the
Portable PLUS and the HP 3000, such as data switches or
call back units?

w Is a logon security program in place with which the
Portable PLUS must know how to interact?

® What phone number must be dialed to access the HP 30007
B What responses must be sent to the host?
B What are the lengths of time delays between prompts?

B What account structure will users have? Must they enter
name and account only, are there passwords with them, do
they have to enter a group name and password, do they have
to identify themselves to the system in other ways?

B Will the users be using a public data network, such as
Telenet[TM] or Tymnet[TM]?

Much of this information can be determined by taking notes
of an actual logon dialog with the HP 3000. This is done by
using the Portable PLUS with REFLECTION 1 using the
connection that will be used by the users.

After determining the 1logon procedures for a particular
connection, the system administrator can select sections of
sample command files supplied with AadvanceMail on a
supplemental disc. Using a word processor or EDLIN, the
system administrator can edit these command files to create
a custom command file for each datacom connection. A
separate command file will be used for each connection to be

AdvanceMail for the Portable PLUS
5

installed on the user's Portable PLUS, e.g. direct at the
office, modem at home, and modem using X.25. For each
command file, there will be a specific configuration file
that sets the data communications parameters, such as type
of connection, Baud rate, stop bits, etc., that is called by
REFLECTION 1 when a session is initiated.

The created command and configuration files are then stored
on the Portable PLUS for testing. The testing is done in
two phases, a logon test and then a file transfer test. The
first test verifies the unattended logon process. By doing
the test in two phases, any installation problems can be
identified more easily. The 1logon test will simulate
AdvanceMail calling REFLECTION 1 with a command file and
other user parameters, such as accounts and phone numbers.
These parameters will be passed to REFLECTION 1 by
AdvanceMail in actual use. A successful logon will need to
be terminated manually. The testing may require editing the
command files several times to get timing factors
incorporated. This process is repeated for each command and
configuration file pair. The next phase can then be tested.

In the second phase of testing, 1logon descriptions are
entered into AdvanceMail and activated. The logon
descriptions are the user-specific pieces of information
that are required to make a connection, e.g. phone numbers,
user accounts, and user passwords. The Transfer Mail part
of AdvanceMail will be executed. If it 1is successful, a
summary screen will be displayed. Additional modification
of the command and configuration file pairs may be required.

Depending on the AdvanceMail installation, the user may be
instructed in installing the application or provided with a
Portable PLUS with the necessary installation completed. To
use AdvanceMail, the user will need to become familiar with
the Portable PLUS first. After becoming familiar with the
Portable PLUS, the user can quickly start using AdvanceMail
to send and receive messages.

Additional AdvanceMail Features:

The sending and receiving of messages is the basis for
AdvanceMail. In addition to these capabilities, other
features include:

m Filters to specify actions to be taken on messages with
matching patterns. Patterns can be matched in both the
Sender and Subject fields.

AdvanceMail for the Portable PLUS
6

m Automatic transfer of files from HPDesk to designated
MS-DOS files for use by other applications, such as
1-2-3[R] from Lotus[R].

m Automatic printing and deletion of messages on the host.
m Creation and use of local distribution lists.

® Ability to reply to and forward messages in the In Tray.
® Unattended transfer at user specified time.

® Error log and recovery instructions.

In addition to these application features, the AdvanceMail
transfer mechanism can be used to automatically transfer
information without user intervention. As part of the
installation procedures, the file transfer process can be
changed to:

® Automatically receive messages meeting a predetermined
filter criteria, such as subject or sender.

m Automatically send files without requiring the user to
send them, e.g. a salesman's call report stored as an
MS-DOS file.

®m Add processing to be done before and after transfer or
call other programs to run on the HP 3000.

All of these capabilities require additional customization
prior to installing AdvanceMail on the user's machine, but
extend AdvanceMail far beyond remotely accessing HPDesk.

An example situation may better explain the preceding
capabilities. A sales force for a chemical distributor has
been outfitted with portable computers. During the day each
sales representative uses the Portable PLUS to record sales
call activities on a template. When the sales
representatives get home at night, they compose additional
messages using AdvanceMail. Prior to going to bed, they
connect the phone line to the Portable PLUS and set a
transfer time for the Portable PLUS to wake up and initiate
the transfer. At this transfer time prior to logging on to
the HP 3000, special